Skip to main content Accessibility help
×
Home

Hysteresis in swirling jets

  • Vladimir Shtern (a1) and Fazle Hussain (a1)

Abstract

This paper explains hysteretic transitions in swirling jets and models external flows of vortex suction devices. Toward this goal, the steady rotationally symmetric motion of a viscous incompressible fluid above an infinite conical stream surface of a half-angle θc is studied. The flows analysed are generalizations of Long's vortex. They correspond to the conically similar solutions of the Navier-Stokes equations and are characterized by circulation Γc given at the surface and axial flow force J1. Asymptotic analysis and numerical calculations show that four (for θc ≤ 90°) or five (for θc > 90°) solutions exist in some range of Γc and J1.The solution branches form hysteresis loops which are related to jump transitions between various flow regimes. Four kinds of jump are found: (i) vortex breakdown which transforms a near-axis jet into a two-cell flow with a reverse flow near the axis and an annular jet fanning out along conical surface θ = θs < θc (ii) vortex consolidation causing a reversal of (i); (iii) jump flow separation from surface θ = θc and (iv) jump attachment of the swirling jet to the surface. As Γc and/or J1 decrease, the hysteresis loops disappear through a cusp catastrophe. The physical reasons for the solution non-uniqueness are revealed and the results are discussed in the context of vortex breakdown theories. Vortex breakdown is viewed as a fold catastrophe. Two new striking effects are found: (i) there is a pressure peak of O2c) inside the annular swirling jet; and (ii) a consolidated swirling jet forms with a reversed (‘anti-rocket’) flow force.

Copyright

References

Hide All
Arnol'd, V. I. 1984 Catastrophe Theory, p. 5. Springer.
Benjamin, T. B. 1962 Theory of vortex breakdown phenomenon. J. Fluid Mech. 14, 593629.
Beran, P. S. & Culick, F. E. C. 1992 The role of non-uniqueness in the development of vortex breakdown in tubes. J. Fluid Mech. 242, 491527.
Boguslavskii, E. M. & Ivanskii, V. G. SU Patent 1542544 Al, 02.12.1987.
Burggraf, O. R. & Foster, M. R. 1977 Continuation or breakdown in tornado-like vortices. J. Fluid Mech. 80, 685704.
Davies-Jones, R. P. 1982 Tornado dynamics. In Thunderstorms: A Social, Scientific and Technological Documentary (ed.E. Kessler), vol. 2, pp. 297361.
Drazin, P. G., Banks, W. H. H. & Zaturska, M. A. 1995 The development of Long's vortex. J. Fluid Mech. 286, 359377.
Fernandez de la Mora, J., FernandezFeria, J. & Barrero, A. 1991 Theory of incompressible conical vortices at high Reynolds numbers. Bull. Am. Phys. Soc. 36, 2619.
Foster, M. R. & Duck, P. W. 1982 Inviscid instability of Long's vortex. Phys. Fluids 25, 17151718.
Foster, M. R. & Jacqmin, D. 1991 Non-parallel effects in the stability of Long's vortex. J. Fluid Mech. 244, 289306.
Foster, M. R. & Smith, F. T. 1989 Stability of Long's vortex at large flow force. J. Fluid Mech. 206, 405432.
Goldshtik, M. A. 1960 A paradoxical solution of the Navier-Stokes equations. Appl. Math. Mech.(Sov.) 24, 610621.
Goldshtik, M. A. 1979 On swirling jets. Fluid Dyn. 14(1), 1926.
Goldshtik, M. A. 1981 Vortex Flows. Novosibirsk: Nauka.
Goldshtik, M. A. 1990 Viscous flow paradoxes. Ann. Rev. Fluid Mech. 22, 441472.
Goldshtik, M. A. & Shtern, V. N. 1990 Collapse in conical viscous flows. J. Fluid Mech. 218, 483484.
Goldshtik, M. A., Shtern, V. N. & Yavorsky, N.I. 1989 Viscous Flows with Paradoxical Features. Novosibirsk: Nauka.
Hall, M. G. 1972 Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195218.
Hasan, M. A. Z. & Hussain, A. K. M. F. 1982 The self-exited axisymmetric jet. J. Fluid Mech. 115, 5989.
Keller, J. J. 1994 On tornado-like vortex flows. Phys Fluids 6, 15241534.
Khorami, M. R. & Triveli, P. 1994 The viscous stability analysis of Long's vortex. Phys. Fluids 6, 26232630.
Landau, L. D. 1944 On exact solution of the Navier-Stokes equations. Dokl. Akad. Nauk SSSR 43, 299301.
Leibovich, S. 1984 Vortex stability and breakdown: survey and extension. AIAA J. 22, 11921206.
Long, R. R. 1961 A vortex in an infinite viscous fluid. J. Fluid Mech. 11, 611623.
Lopez, J. M. 1994 On the bifurcation structure of axisymmetric vortex breakdown in a constricted pipe. Phys. Fluids 6, 36833693.
Morton, B. R. 1969 The strength of vortex and swirling core flows. J. Fluid Mech. 38, 315333.
Paull, R. & Pillow, A. F. 1985 Conically similar viscous flows. Part 3. Characterization of axial causes of swirling flows and one-parameter flow generated by a uniform half-line source of kinematic swirl angular momentum. J. Fluid Mech. 155, 359380.
Peckham, D. H. & Atkinson, S. A. 1957 Preliminary results of low speed wind tunnel tests on a Gothic wing of aspect ratio 1.0. Aero. Res. Counc. Tech. Rep. CP-508, TN NO. Aero. 2504.
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
Schlichting, H. 1933 Laminaire Strahlausbreitung. Z. Angew. Math. Mech. 13, 260263.
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill.
Schmuker, A. & Gersten, K. 1988 Vortex breakdown and its control on delta wings. Fluid Dyn Res. 3, 268272.
Schneider, W. 1985 Decay of momentum flux in submerged jets. J. Fluid Mech. 154, 91110.
Schneider, W., Zauner, E. & Bohm, H. 1987 The recirculatory flow induced by a laminar axisymmetric jet issuing from a wall. Trans. ASME I: J. Fluids Engng 109, 237241.
Serrin, J. 1972 The swirling vortex. Phil. Trans. R. Soc. Lond. A 271, 325360.
Shtern, V. & Hussain, F. 1993 Hysteresis in a swirling jet as a model tornado. Phys. FluidsA 5, 21832195 (referred to herein as SH).
Slezkin, N. A. 1934 On a case of integrability of the full differential equations of viscous fluid motion. Sci. Pap. Moscow Univ. 2, 8990.
Snow, J. T. 1982 A review of recent advances in tornado vortex dynamics. Rev. Geophys. Space Phys. 20, 953964.
Sozou, C. 1992 On solution relating to conical vortices over a plane wall. J. Fluid Mech. 244, 633644.
Sozou, C, Wilkinson, L. C. & Shtern, V. 1994 On swirling flows in infinite fluid. J. Fluid Mech. 276, 261271.
Spotar’, S. YU., Chohar’, I. A., Lukashov, V. V. & Prozorov, D. S. 1994 A method and device for vortex suction of gases. Proposal N 5050257, approved 1.06.1994.
Spotar’, S. YU. & Terekhov, V. I. 1987 Two spontaneously alternating regimes of a vortex flow above a plane. J. Appl. Mech. Tech. Phys. No. 2, 6870.
Squire, H. B. 1952 Some viscous fluid flow problems. 1. Jet emerging from a hole in a plane wall. Phil. Mag. 43, 942945.
Squire, H. B. 1956 Rotating fluids. In Surveys in Mechanics (ed . by G. K. Batchelor & R. M. Davies), pp. 139161. Cambridge University Press.
Stuart, J. T. 1987 A critical review of vortex breakdown theory. Proc. 2nd Intl Colloq. Vortical Flows, pp. 123. Switzerland, Brown Bovery Company.
Yih, C.-S., Wu, F., Garg, A. K. & Leibovich, S. 1982 Conical vortices: A class of exact solutions of the Navier-Stokes equations. Phys. Fluids 25, 21472157.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Hysteresis in swirling jets

  • Vladimir Shtern (a1) and Fazle Hussain (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed