Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-02T03:23:49.858Z Has data issue: false hasContentIssue false

Hydrodynamic metamaterial redirector for steering fluid flow in pipelines with arbitrary curvatures

Published online by Cambridge University Press:  01 April 2024

Haixiang Pang*
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Yunxiang You
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Yazhou Bay Institute of Deepsea Technology, Shanghai Jiao Tong University, Sanya 572000, PR China
Ke Chen
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Yazhou Bay Institute of Deepsea Technology, Shanghai Jiao Tong University, Sanya 572000, PR China
*
Email address for correspondence: panghx@sjtu.edu.cn

Abstract

The dynamics of fluid-conveying pipelines with different shapes has received extensive research attention. Significant wall shear stress and flow separation occur when the fluid flows through pipelines with various curvatures. These phenomena trigger pipeline vibration, the generation of mechanical and hydrodynamic noise, damage, and even the rupture of the pipeline. However, previous studies have not considered the mechanism of internal pipeline flow to eliminate flow separation and the generation of secondary flow inside bent pipelines by redirecting and manipulating the flow. To steer the fluid flow, a ‘hydrodynamic transformation strategy’ based on the metamaterial technology is proposed for the first time in this work; through this strategy, the fluid in pipelines can be made to flow along trajectories that are always parallel to the central axis of the bent pipelines. Interestingly, this innovative method can effectively eliminate the elbow-induced secondary flow and prevent the generation of a pressure gradient toward the pipeline wall. Using the soft lithography technology or the three-dimensional printing technology, the hydrodynamic metamaterial microstructure required to manipulate the fluid flow path in actual engineering applications can be achieved. Our work paves the way for developing new approaches for controlling the flow characteristics and reducing the turbulence intensity of the fluid flowing in pipelines with elbows and corners.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, E., Perrett, W. & Jeffery, G.B. 1916 The foundation of the general theory of relativity. Ann. Phys. 49, 769822.Google Scholar
Beauvais, R., Pelat, A., Gautier, F., Florquin, V., Vandenbossche, G. & Gilbert, J. 2021 Inverse identification of the acoustic pressure inside a U-shaped pipe line based on acceleration measurements. Mech. Syst. Signal Process. 160, 107831.CrossRefGoogle Scholar
Breugem, W.P. 2007 The effective viscosity of a channel-type porous medium. Phys. Fluids 19, 103104.CrossRefGoogle Scholar
Cai, W., Chettiar, U.K., Kildishev, A.V. & Shalaev, V.M. 2007 Optical cloaking with metamaterials. Nat. Photonics 1, 224227.CrossRefGoogle Scholar
Cao, Y.H., Liu, G.M. & Hu, Z. 2023 Vibration calculation of pipeline systems with arbitrary branches by the hybrid energy transfer matrix method. Thin-Walled Struct. 183, 110442.CrossRefGoogle Scholar
Chen, H. & Chan, C.T. 2008 Electromagnetic wave manipulation by layered systems using the transformation media concept. Phys. Rev. B - Condens. Matter Mater. Phys. 78, 054204.CrossRefGoogle Scholar
Chen, H., Chan, C.T. & Sheng, P. 2010 Transformation optics and metamaterials. Nat. Mater. 9, 387396.CrossRefGoogle ScholarPubMed
Chen, H., et al. 2023 Microfluidic production of silica nanofluids for highly efficient two-phase cooling with micro pin-fins structure. Chem. Engng J. 465, 142799.Google Scholar
Chen, S., Sun, Y., Fan, F., Chen, S., Zhang, Y., Zhang, Y., Meng, X. & Lin, J.M. 2022 Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Anal. Chem. 157, 116737.CrossRefGoogle Scholar
Cui, P. & Wang, S. 2019 Application of microfluidic chip technology in pharmaceutical analysis: a review. J. Pharm. Anal. 9, 238247.CrossRefGoogle ScholarPubMed
Dang, C., Jia, L. & Lu, Q. 2017 Investigation on thermal design of a rack with the pulsating heat pipe for cooling CPUs. Appl. Therm. Engng 110, 390398.CrossRefGoogle Scholar
Dayarathna, M., Wen, Y. & Fan, R. 2016 Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutorials 18, 732794.CrossRefGoogle Scholar
Ding, J., Zhang, H., Leng, D., Xu, H., Tian, C. & Zhai, Z. 2022 Experimental investigation and application analysis on an integrated system of free cooling and heat recovery for data centers. Intl J. Refrig. 136, 142151.CrossRefGoogle Scholar
Elvira, K.S., I Solvas, X.C., Wootton, R.C.R. & & Demello, A.J. 2013 The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 5, 905915.CrossRefGoogle ScholarPubMed
Fang, G., Lu, H., Al-Nakashli, R., Chapman, R., Zhang, Y., Ju, L.A., Lin, G., Stenzel, M.H. & Jin, D. 2022 Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication 14, 015006.CrossRefGoogle Scholar
Finlay, W.H., Keller, J.B. & Ferziger, J.H. 1988 Instability and transition in nonaxisymmetric curved channel flow. 1st National Fluid Dynamics Conference 1988, p. 194.Google Scholar
Gori, T., Polimeni, A., Indolfi, C., Räber, L., Adriaenssens, T. & Münzel, T. 2019 Predictors of stent thrombosis and their implications for clinical practice. Nat. Rev. Cardiol. 16, 243256.CrossRefGoogle ScholarPubMed
Guo, X., Cao, Y., Ma, H., Li, H., Wang, B., Han, Q. & Wen, B. 2022 Vibration analysis for a parallel fluid-filled pipelines-casing model considering casing flexibility. Intl. J. Mech. Sci. 231, 107606.CrossRefGoogle Scholar
Hale, R.S., Bonnecaze, R.T. & Hidrovo, C.H. 2014 Optimization of capillary flow through square micropillar arrays. Intl J. Multiphase Flow 58, 3951.CrossRefGoogle Scholar
He, W., Zhang, J., Li, H., Guo, R., Liu, S., Wu, X., Wei, J. & Wang, Y. 2023 Effects of different water-cooled heat sinks on the cooling system performance in a data center. Energy Build. 292, 113162.CrossRefGoogle Scholar
Hughes, A.J., Lin, R.K.C., Peehl, D.M. & Herr, A.E. 2012 Microfluidic integration for automated targeted proteomic assays. Proc. Natl Acad. Sci. USA 109, 59725977.CrossRefGoogle ScholarPubMed
Jiang, W.X., Cui, T.J., Zhou, X.Y., Yang, X.M. & Cheng, Q. 2008 Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 78, 066607.CrossRefGoogle ScholarPubMed
Jinnouchi, H., Torii, S., Sakamoto, A., Kolodgie, F.D., Virmani, R. & Finn, A.V. 2019 Fully bioresorbable vascular scaffolds: lessons learned and future directions. Nat. Rev. Cardiol. 16, 286304.CrossRefGoogle ScholarPubMed
Lamb, J. 2009 The Greening of IT: How Companies Can Make a Difference for the Environment. IBM Press.Google Scholar
Leonhardt, U. 2006 Optical conformal mapping. Science (80-.) 312, 17771780.CrossRefGoogle ScholarPubMed
Leslie, D.C., et al. 2014 A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat. Biotechnol. 32, 11341140.CrossRefGoogle ScholarPubMed
Li, Q., Song, J., Shang, D. & Tang, R. 2021 Sound radiation at the nozzle of a pipeline system and noise reduction based on a non-anechoic pool. Appl. Acoust. 182, 108227.CrossRefGoogle Scholar
Liao, K. 2012 Surgical treatment of coronary artery disease. In Coronary Heart Disease: Clinical, Pathological, Imaging, and Molecular Profiles (ed. Z. Vlodaver, R.F. Wilson & D.J Garry), pp. 405422. Springer.CrossRefGoogle Scholar
Łuczko, J. & Czerwiński, A. 2019 Three-dimensional dynamics of curved pipes conveying fluid. J. Fluids Struct. 91, 102704.CrossRefGoogle Scholar
Martinez, F. & Maldovan, M. 2022 Metamaterials: optical, acoustic, elastic, heat, mass, electric, magnetic, and hydrodynamic cloaking. Mater. Today Phys. 27, 100819.Google Scholar
McCarthy, P.M. & Smith, W.A. 2002 Mechanical circulatory support: a long and winding road. Science (80-.) 295, 998999.CrossRefGoogle ScholarPubMed
Mehmood, Z., Hameed, A., Javed, A. & Hussain, A. 2020 Analysis of premature failure of aircraft hydraulic pipes. Engng Fail. Anal. 109, 104356.CrossRefGoogle Scholar
Morton, K.J., Loutherback, K., Inglis, D.W., Tsui, O.K., Sturm, J.C., Chou, S.Y. & Austin, R.H. 2008 Hydrodynamic metamaterials: microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc. Natl Acad. Sci. USA 105, 74347438.CrossRefGoogle ScholarPubMed
Murphy, S.L., Kochanek, K.D., Xu, J. & Arias, E. 2021 Mortality in the United States 2020. NCHS Data Brief, pp. 1-8.Google Scholar
Opie, N.L., et al. 2018 Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nat. Biomed. Engng 2, 907914.CrossRefGoogle Scholar
Oxley, T.J., et al. 2016 Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat. Biotechnol. 34, 320327.CrossRefGoogle ScholarPubMed
Pang, H., You, Y., Feng, A. & Chen, K. 2022 Hydrodynamic manipulation cloak for redirecting fluid flow. Phys. Fluids 34, 053603.CrossRefGoogle Scholar
Park, J., Youn, J.R. & Song, Y.S. 2019 Hydrodynamic metamaterial cloak for drag-free flow. Phys. Rev. Lett. 123, 074502.CrossRefGoogle ScholarPubMed
Pattanayak, P., et al. 2021 Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid. Nanofluidics 25, 99.CrossRefGoogle ScholarPubMed
Pendry, J.B., Schurig, D. & Smith, D.R. 2006 Controlling electromagnetic fields. Science (80-.) 312, 17801782.CrossRefGoogle ScholarPubMed
Rembert, F., Stolz, A., Soulaine, C. & Roman, S. 2023 A microfluidic chip for geoelectrical monitoring of critical zone processes. Lab on a Chip 23, 34333442.CrossRefGoogle ScholarPubMed
Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. 2013 Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901.CrossRefGoogle ScholarPubMed
Sharma, U., et al. 2018 The development of bioresorbable composite polymeric implants with high mechanical strength. Nat. Mater. 17, 96102.CrossRefGoogle ScholarPubMed
Sulaiman, M.W., Daraghmeh, H.M. & Wang, C.C. 2020 Energy-saving potential of separated two-phase thermosiphon loops for data center cooling. J. Therm. Anal. Calorim. 141, 245265.CrossRefGoogle Scholar
Urzhumov, Y.A. & Smith, D.R. 2011 Fluid flow control with transformation media. Phys. Rev. Lett. 107, 074501.CrossRefGoogle ScholarPubMed
Virani, S.S., et al. 2021 Heart disease and stroke statistics - 2021 update: a report from the American Heart Association. Circulation 143, E254E743.CrossRefGoogle ScholarPubMed
Wiggert, D.C. & Tijsseling, A.S. 2001 Fluid transients and fluid-structure interaction in flexible liquid-filled piping. Appl. Mech. Rev. 54, 455481.CrossRefGoogle Scholar
Wouk, J., Dekker, R.F.H., Queiroz, E.A.I.F. & Barbosa-Dekker, A.M. 2021 β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Intl J. Biol. Macromol. 177, 176203.CrossRefGoogle ScholarPubMed
Wu, J.H., Sun, Y.D., Su, M.Z. & Zhu, H.Z. 2023 Fluid-structure interaction and band gap analysis of periodic composite liquid-filled pipe. Compos. Struct. 304, 116444.CrossRefGoogle Scholar
Xu, L. & Chen, H. 2014 Conformal transformation optics. Nat. Photonics 9, 1523.CrossRefGoogle Scholar
Xue, Z.H., Ai, B.C. & Qu, W. 2023 Data center energy conservation study utilizing loop heat pipes as a chip-level cooling technique and its industrial application. Appl. Therm. Engng 220, 119715.CrossRefGoogle Scholar
Yang, J., Giessen, H. & Lalanne, P. 2015 Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing. Nano Lett. 15, 34393444.CrossRefGoogle ScholarPubMed
Yang, Y., Qin, Z. & Zhang, Y. 2023 Random response analysis of hydraulic pipeline systems under fluid fluctuation and base motion. Mech. Syst. Signal Process. 186, 109905.CrossRefGoogle Scholar
Yazdchi, K., Srivastava, S. & Luding, S. 2011 Microstructural effects on the permeability of periodic fibrous porous media. Intl J. Multiphase Flow 37, 956966.CrossRefGoogle Scholar
Zhang, L., Zhang, T., Ouyang, H., Li, T. & You, M. 2023 Natural frequency assignment of a pipeline through structural modification in layout optimization of elastic supports. J. Sound Vib. 561, 117702.CrossRefGoogle Scholar
Zhang, N., Jiao, B., Ye, Y., Kong, Y., Du, X., Liu, R., Cong, B., Yu, L., Jia, S. & Jia, K. 2022 Embedded cooling method with configurability and replaceability for multi-chip electronic devices. Energy Convers. Manag. 253, 115124.CrossRefGoogle Scholar
Zheng, S., Yu, Y., Qiu, M., Wang, L. & Tan, D. 2021 A modal analysis of vibration response of a cracked fluid-filled cylindrical shell. Appl. Math. Model. 91, 934958.CrossRefGoogle Scholar