Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T06:21:25.577Z Has data issue: false hasContentIssue false

Hydrodynamic instabilities of a dual-mode air–SF6 interface induced by a cylindrically convergent shock

Published online by Cambridge University Press:  19 May 2023

Yu Liang
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi 129188, UAE
Lili Liu
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi 129188, UAE
Xisheng Luo*
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Chih-Yung Wen*
Affiliation:
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
*
Email addresses for correspondence: xluo@ustc.edu.cn, chihyung.wen@polyu.edu.hk
Email addresses for correspondence: xluo@ustc.edu.cn, chihyung.wen@polyu.edu.hk

Abstract

Shock-tube experiments are performed on the convergent Richtmyer–Meshkov (RM) instability of a multimode interface. The temporal growth of each Fourier mode perturbation is measured. The hydrodynamic instabilities, including the RM instability and the additional Rayleigh–Taylor (RT) effect, imposed by the convergent shock wave on the dual-mode interface, are investigated. The mode-coupling effect on the convergent RM instability coupled with the RT effect is quantified. It is evident that the amplitude growths of all first-order modes and second-order harmonics and their couplings depend on the variance of the interface radius, and are influenced by the mode-coupling from the very beginning. It is confirmed that the mode-coupling mechanism is closely related to the initial spectrum, including azimuthal wavenumbers, relative phases and initial amplitudes of the constituent modes. Different from the conclusion in previous studies on the convergent single-mode RM instability that the additional RT effect always suppresses the perturbation growth, the mode-coupling might result in the additional RT effect promoting the instability of the constituent Fourier mode. By considering the geometry convergence, the mode-coupling effect and other physical mechanisms, second-order nonlinear solutions are established to predict the RM instability and the additional RT effect in the cylindrical geometry, reasonably quantifying the amplitude growths of each mode, harmonic and coupling. The nonlinear solutions are further validated by simulations considering various initial spectra. Last, the temporal evolutions of the mixed mass and normalized mixed mass of a shocked multimode interface are calculated numerically to quantify the mixing of two fluids in the cylindrical geometry.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarzhi, S.I. 2008 Coherent structures and pattern formation in Rayleigh–Taylor turbulent mixing. Phys. Scr. 78 (1), 015401.CrossRefGoogle Scholar
Abarzhi, S.I. 2010 Review of theoretical modelling approaches of Rayleigh–Taylor instabilities and turbulent mixing. Phil. Trans. R. Soc. Lond. A 368 (1916), 18091828.Google ScholarPubMed
Abgrall, R. 1996 How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125 (1), 150160.CrossRefGoogle Scholar
Alon, U., Hecht, J., Mukamel, D. & Shvarts, D. 1994 Scale invariant mixing rates of hydrodynamically unstable interface. Phys. Rev. Lett. 72, 28672870.CrossRefGoogle Scholar
Alon, U., Hecht, J., Ofer, D. & Shvarts, D. 1995 Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts. Phys. Rev. Lett. 74, 534537.CrossRefGoogle ScholarPubMed
Amendt, P., Colvin, J.D., Ramshaw, J.D., Robey, H.F. & Landen, O.L. 2003 Modified Bell–Plesset effect with compressibility: application to double-shell ignition target designs. Phys. Plasmas 10 (3), 820829.CrossRefGoogle Scholar
Apazidis, N. & Lesser, M.B. 1996 On generation and convergence of polygonal-shaped shock waves. J. Fluid Mech. 309, 301319.CrossRefGoogle Scholar
Apazidis, N., Lesser, M.B., Tillmark, N. & Johansson, B. 2002 An experimental and theoretical study of converging polygonal shock waves. Shock Waves 12, 3958.CrossRefGoogle Scholar
Balasubramanian, S., Orlicz, G.C. & Prestridge, K.P. 2013 Experimental study of initial condition dependence on turbulent mixing in shock-accelerated Richtmyer–Meshkov fluid layers. J. Turbul. 14 (3), 170196.CrossRefGoogle Scholar
Bates, J.W. 2004 Initial value problem solution for isolated rippled shock fronts in arbitrary fluid media. Phys. Rev. E 69 (5), 056313.CrossRefGoogle ScholarPubMed
Bell, G.I. 1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Tech. Rep. LA-1321. Los Alamos National Laboratory.Google Scholar
Bender, J.D., et al. 2021 Simulation and flow physics of a shocked and reshocked high-energy-density mixing layer. J. Fluid Mech. 915, A84.CrossRefGoogle Scholar
Biamino, L., Jourdan, G., Houas, L., Vandenboomgaerde, M. & Souffland, D. 2017 Light/heavy converging Richtmyer–Meshkov instability in a conventional shock tube. In International Symposium on Shock Waves (ed. A. Sasoh, T. Aoki & M. Katayama), pp. 595–601. Springer.CrossRefGoogle Scholar
Biamino, L., Jourdan, G., Mariani, C., Houas, L., Vandenboomgaerde, M. & Souffland, D. 2015 On the possibility of studying the converging Richtmyer–Meshkov instability in a conventional shock tube. Exp. Fluids 56, 26.CrossRefGoogle Scholar
Brasseur, M., Vandenboomgaerde, M., Mariani, C., Barros, D.C., Souffland, D. & Jourdan, G. 2021 Experimental generation of spherical converging shock waves. Exp. Fluids 62 (7), 18.CrossRefGoogle Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445468.CrossRefGoogle Scholar
Campos, F.C. & Wouchuk, J.G. 2016 Analytical scalings of the linear Richtmyer–Meshkov instability when a shock is reflected. Phys. Rev. E 93 (5), 053111.CrossRefGoogle ScholarPubMed
Chester, W. 1954 The quasi-cylindrical shock tube. Phil. Mag. 45, 12931301.CrossRefGoogle Scholar
Chisnell, R.F. 1957 The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2, 286298.CrossRefGoogle Scholar
Dell, Z., Stellingwerf, R.F. & Abarzhi, S.I. 2015 Effect of initial perturbation amplitude on Richtmyer–Meshkov flows induced by strong shocks. Phys. Plasmas 22 (9), 092711.CrossRefGoogle Scholar
Dell, Z.R., Pandian, A., Bhowmick, A.K., Swisher, N.C., Stanic, M., Stellingwerf, R.F. & Abarzhi, S.I. 2017 Maximum initial growth-rate of strong-shock-driven Richtmyer–Meshkov instability. Phys. Plasmas 24 (9), 090702.CrossRefGoogle Scholar
Di Stefano, C.A., Malamud, G., Kuranz, C.C., Klein, S.R. & Drake, R.P. 2015 a Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density. High Energy Density Phys. 17, 263269.CrossRefGoogle Scholar
Di Stefano, C.A., Malamud, G., Kuranz, C.C., Klein, S.R., Stoeckl, C. & Drake, R.P. 2015 b Richtmyer–Meshkov evolution under steady shock conditions in the high-energy-density regime. Appl. Phys. Lett. 106 (11), 114103.CrossRefGoogle Scholar
Dimonte, G. & Ramaprabhu, P. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids 22, 014104.CrossRefGoogle Scholar
Dimonte, G. & Schneider, M. 2000 Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids 12, 304321.CrossRefGoogle Scholar
Dimotakis, P.E. & Samtaney, R. 2006 Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18, 031705.CrossRefGoogle Scholar
Ding, J., Deng, X. & Luo, X. 2021 Convergent Richtmyer–Meshkov instability on a light gas layer with perturbed inner and outer surfaces. Phys. Fluids 33 (10), 102112.CrossRefGoogle Scholar
Ding, J., Li, J., Sun, R., Zhai, Z. & Luo, X. 2019 Convergent Richtmyer–Meshkov instability of a heavy gas layer with perturbed outer interface. J. Fluid Mech. 878, 277291.CrossRefGoogle Scholar
Ding, J., Liang, Y., Chen, M., Zhai, Z., Si, T. & Luo, X. 2018 Interaction of planar shock wave with three-dimensional heavy cylindrical bubble. Phys. Fluids 30 (10), 106109.Google Scholar
Ding, J., Si, T., Yang, J., Lu, X., Zhai, Z. & Luo, X. 2017 a Measurement of a Richtmyer–Meshkov instability at an air-SF$_6$ interface in a semiannular shock tube. Phys. Rev. Lett. 119 (1), 014501.CrossRefGoogle Scholar
Ding, J.C., Si, T., Chen, M.J., Zhai, Z.G., Lu, X.Y. & Luo, X.S. 2017 b On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289317.CrossRefGoogle Scholar
Drake, R.P. 2018 High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics. Springer.CrossRefGoogle Scholar
Elbaz, Y. & Shvarts, D. 2018 Modal model mean field self-similar solutions to the asymptotic evolution of Rayleigh–Taylor and Richtmyer–Meshkov instabilities and its dependence on the initial conditions. Phys. Plasmas 25 (6), 062126.CrossRefGoogle Scholar
Epstein, R. 2004 On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. Phys. Plasmas 11 (11), 51145124.CrossRefGoogle Scholar
Fan, E., Guan, B., Wen, C.Y. & Shen, H. 2019 Numerical study on the jet formation of simple-geometry heavy gas inhomogeneities. Phys. Fluids 31, 026103.CrossRefGoogle Scholar
Fincke, J.R., Lanier, N.E., Batha, S.H., Hueckstaedt, R.M., Magelssen, G.R., Rothman, S.D., Parker, K.W. & Horsfield, C.J. 2004 Postponement of saturation of the Richtmyer–Meshkov instability in a convergent geometry. Phys. Rev. Lett. 93 (11), 115003.CrossRefGoogle Scholar
Glendinning, S.G., et al. 2000 Ablation front Rayleigh–Taylor growth experiments in spherically convergent geometry. Phys. Plasmas 7 (5), 20332039.CrossRefGoogle Scholar
Groom, M. & Thornber, B. 2020 The influence of initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer–Meshkov instability. Physica D 407, 132463.CrossRefGoogle Scholar
Grove, J.W., Holmes, R., Sharp, D.H., Yang, Y. & Zhang, Q. 1993 Quantitative theory of Richtmyer–Meshkov instability. Phys. Rev. Lett. 71, 34733476.CrossRefGoogle ScholarPubMed
Guan, B., Liu, Y., Wen, C.-Y. & Shen, H. 2018 Numerical study on liquid droplet internal flow under shock impact. AIAA J. 56 (9), 33823387.CrossRefGoogle Scholar
Guo, H. 2018 Theoretical study of weakly nonlinear Rayleigh–Taylor instability in cylindrical implosions. PhD thesis, China Academy of Engineering Physics.Google Scholar
Guo, H., Cheng, T. & Li, Y. 2020 Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry. Chin. Phys. B 29 (11), 115202.CrossRefGoogle Scholar
Guo, H., Wang, L., Ye, W., Wu, J. & Zhang, W. 2018 Weakly nonlinear Rayleigh–Taylor instability in cylindrically convergent geometry. Chin. Phys. Lett. 35 (5), 055201.CrossRefGoogle Scholar
Guo, H., Yu, X., Wang, L., Ye, W., Wu, J. & Li, Y. 2014 On the second harmonic generation through Bell–Plesset effects in cylindrical geometry. Chin. Phys. Lett. 31 (4), 044702.CrossRefGoogle Scholar
Guo, X., Cong, Z., Si, T. & Luo, X. 2022 Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer–Meshkov flows with reshock. J. Fluid Mech. 941, A65.CrossRefGoogle Scholar
Haan, S.W. 1989 Onset of nonlinear saturation for Rayleigh–Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A 39 (11), 5812.CrossRefGoogle ScholarPubMed
Haan, S.W. 1991 Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys. Fluids B 3, 23492355.CrossRefGoogle Scholar
Herrmann, M., Moin, P. & Abarzhi, S.I. 2008 Nonlinear evolution of the Richtmyer–Meshkov instability. J. Fluid Mech. 612, 311338.CrossRefGoogle Scholar
Holmes, R.L., Dimonte, G., Fryxell, B., Gittings, M.L., Grove, J.W., Schneider, M., Sharp, D.H., Velikovich, A.L., Weaver, R.P. & Zhang, Q. 1999 Richtmyer–Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech. 389, 5579.CrossRefGoogle Scholar
Holmes, R.L. & Grove, J.W. 1995 Numerical investigation of Richtmyer–Meshkov instability using front tracking. J. Fluid Mech. 301, 5164.CrossRefGoogle Scholar
Hosseini, S.H.R. & Takayama, K. 2005 Experimental study of Richtmyer–Meshkov instability induced by cylndrical shock waves. Phys. Fluids 17, 084101.CrossRefGoogle Scholar
Igra, D. & Igra, O. 2020 Shock wave interaction with a polygonal bubble containing two different gases, a numerical investigation. J. Fluid Mech. 889, A26.CrossRefGoogle Scholar
Jacobs, J.W. & Catton, I. 1988 Three-dimensional Rayleigh–Taylor instability. Part 1. Weakly nonlinear theory. J. Fluid Mech. 187, 329352.CrossRefGoogle Scholar
Jiang, Y., Wen, C.-Y. & Zhang, D. 2020 Space-time conservation element and solution element method and its applications. AIAA J. 58 (12), 54085430.CrossRefGoogle Scholar
Kjellander, M., Tillmark, N. & Apazidis, N. 2012 Energy concentration by spherical converging shocks generated in a shock tube. Phys. Fluids 24 (12), 126103.CrossRefGoogle Scholar
Lei, F., Ding, J., Si, T., Zhai, Z. & Luo, X. 2017 Experimental study on a sinusoidal air/SF$_6$ interface accelerated by a cylindrically converging shock. J. Fluid Mech. 826, 819829.CrossRefGoogle Scholar
Leinov, E., Malamud, G., Elbaz, Y., Levin, L.A., Ben-Dor, G., Shvarts, D. & Sadot, O. 2009 Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions. J. Fluid Mech. 626, 449475.CrossRefGoogle Scholar
Li, J., Ding, J., Luo, X. & Zou, L. 2022 Instability of a heavy gas layer induced by a cylindrical convergent shock. Phys. Fluids 34 (4), 042123.CrossRefGoogle Scholar
Li, J., Ding, J., Si, T. & Luo, X. 2020 a Convergent Richtmyer–Meshkov instability of light gas layer with perturbed outer surface. J. Fluid Mech. 884, R2.CrossRefGoogle Scholar
Li, M., Ding, J., Zhai, Z., Si, T., Liu, N., Huang, S. & Luo, X. 2020 b On divergent Richtmyer–Meshkov instability of a light/heavy interface. J. Fluid Mech. 901, A38.CrossRefGoogle Scholar
Li, X., Fu, Y., Yu, C. & Li, L. 2021 Statistical characteristics of turbulent mixing in spherical and cylindrical converging Richtmyer–Meshkov instabilities. J. Fluid Mech. 928, A10.CrossRefGoogle Scholar
Liang, Y. 2022 a Fundamental Studies of Shock-Driven Hydrodynamic Instabilities. Springer Nature.CrossRefGoogle Scholar
Liang, Y. 2022 b The phase effect on the Richtmyer–Meshkov instability of a fluid layer. Phys. Fluids 34 (3), 034106.CrossRefGoogle Scholar
Liang, Y., Ding, J., Zhai, Z., Si, T. & Luo, X. 2017 Interaction of cylindrically converging diffracted shock with uniform interface. Phys. Fluids 29 (8), 086101.CrossRefGoogle Scholar
Liang, Y., Liu, L. & Luo, X. 2022 Experimental study of bubble competition and spike competition in Richtmyer–Meshkov flows. J. Fluid Mech. 949, A3.CrossRefGoogle Scholar
Liang, Y., Liu, L., Zhai, Z., Ding, J., Si, T. & Luo, X. 2021 Richtmyer–Meshkov instability on two-dimensional multi-mode interfaces. J. Fluid Mech. 928, A37.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2023 Hydrodynamic instabilities of two successive slow/fast interfaces induced by a weak shock. J. Fluid Mech. 955, A40.CrossRefGoogle Scholar
Liang, Y., Zhai, Z., Ding, J. & Luo, X. 2019 Richtmyer–Meshkov instability on a quasi-single-mode interface. J. Fluid Mech. 872, 729751.CrossRefGoogle Scholar
Liang, Y., Zhai, Z. & Luo, X. 2018 Interaction of strong converging shock wave with SF$_{6}$ gas bubble. Sci. China Phys. Mech. 61 (6), 19.CrossRefGoogle Scholar
Liang, Y., Zhai, Z., Luo, X. & Wen, C.-Y. 2020 Interfacial instability at a heavy/light interface induced by rarefaction waves. J. Fluid Mech. 885, A42.CrossRefGoogle Scholar
Liu, H. & Xiao, Z. 2016 Scale-to-scale energy transfer in mixing flow induced by the Richtmyer–Meshkov instability. Phys. Rev. E 93 (5), 053112.CrossRefGoogle ScholarPubMed
Liu, L., Liang, Y., Ding, J., Liu, N. & Luo, X. 2018 An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech. 853, R2.CrossRefGoogle Scholar
Liu, W., He, X. & Yu, C. 2012 Cylindrical effects on Richtmyer–Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime. Phys. Plasmas 19 (7), 072108.Google Scholar
Liu, W., Wang, X., Liu, X., Yu, C., Fang, M. & Ye, W. 2020 Pure single-mode Rayleigh–Taylor instability for arbitrary Atwood numbers. Sci. Rep. 10 (1), 19.Google ScholarPubMed
Liu, W., Yu, C., Ye, W., Wang, L. & He, X. 2014 Nonlinear theory of classical cylindrical Richtmyer–Meshkov instability for arbitrary Atwood numbers. Phys. Plasmas 21 (6), 062119.Google Scholar
Liverts, M. & Apazidis, N. 2016 Limiting temperatures of spherical shock wave implosion. Phys. Rev. Lett. 116, 014501.CrossRefGoogle ScholarPubMed
Livescu, D. 2020 Turbulence with large thermal and compositional density variations. Annu. Rev. Fluid Mech. 52, 309341.CrossRefGoogle Scholar
Lombardini, M. & Pullin, D.I. 2009 a Startup process in the Richtmyer–Meshkov instability. Phys. Fluids 21 (4), 044104.CrossRefGoogle Scholar
Lombardini, M. & Pullin, D.I. 2009 b Small-amplitude perturbations in the three-dimensional cylindrical Richtmyer–Meshkov instability. Phys. Fluids 21, 114103.CrossRefGoogle Scholar
Lombardini, M., Pullin, D.I. & Meiron, D.I. 2014 Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. J. Fluid Mech. 748, 85.CrossRefGoogle Scholar
Luo, X., Ding, J., Wang, M., Zhai, Z. & Si, T. 2015 A semi-annular shock tube for studying cylindrically converging Richtmyer–Meshkov instability. Phys. Fluids 27 (9), 091702.CrossRefGoogle Scholar
Luo, X., Li, M., Ding, J., Zhai, Z. & Si, T. 2019 Nonlinear behaviour of convergent Richtmyer–Meshkov instability. J. Fluid Mech. 877, 130141.CrossRefGoogle Scholar
Luo, X., Liu, L., Liang, Y., Ding, J. & Wen, C.-Y. 2020 Richtmyer–Meshkov instability on a dual-mode interface. J. Fluid Mech. 905, A5.CrossRefGoogle Scholar
Luo, X., Si, T., Yang, J. & Zhai, Z. 2014 A cylindrical converging shock tube for shock-interface studies. Rev. Sci. Instrum. 85, 015107.CrossRefGoogle ScholarPubMed
Luo, X., Zhang, F., Ding, J., Si, T., Yang, J., Zhai, Z. & Wen, C. 2018 Long-term effect of Rayleigh–Taylor stabilization on converging Richtmyer–Meshkov instability. J. Fluid Mech. 849, 231244.CrossRefGoogle Scholar
Mansoor, M.M., Dalton, S.M., Martinez, A.A., Desjardins, T., Charonko, J.J. & Prestridge, K.P. 2020 The effect of initial conditions on mixing transition of the Richtmyer–Meshkov instability. J. Fluid Mech. 904, A3.CrossRefGoogle Scholar
Matsuoka, C. & Nishihara, K. 2006 Fully nonlinear evolution of a cylindrical vortex sheet in incompressible Richtmyer–Meshkov instabilitys. Phys. Rev. E 73, 055304.CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.CrossRefGoogle Scholar
Mikaelian, K.O. 1990 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified spherical shells. Phys. Rev. A 42, 3400.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2005 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17, 094105.CrossRefGoogle Scholar
Miles, A.R. 2004 Bubble merger model for the nonlinear Rayleigh–Taylor instability driven by a strong blast wave. Phys. Plasmas 11, 51405155.CrossRefGoogle Scholar
Miles, A.R., Edwards, M.J., Blue, B., Hansen, J.F., Robey, H.F., Drake, R.P., Kuranz, C. & Leibrandt, D.R. 2004 The effects of a short-wavelength mode on the evolution of a long-wavelength perturbatoin driven by a strong blast wave. Phys. Plasmas 11, 55075519.CrossRefGoogle Scholar
Mohaghar, M. 2019 Effects of initial conditions and Mach number on turbulent mixing transition of shock-driven variable-density flow. PhD thesis, Georgia Institute of Technology.Google Scholar
Mohaghar, M., Carter, J., Musci, B., Reilly, D., McFarland, J.A. & Ranjan, D. 2017 Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech. 831, 779825.CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Pathikonda, G. & Ranjan, D. 2019 The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions. J. Fluid Mech. 871, 595635.CrossRefGoogle Scholar
Niederhaus, C.E. & Jacobs, J.W. 2003 Experimental study of the Richtmyer–Meshkov instability of incompressible fluids. J. Fluid Mech. 485, 243277.CrossRefGoogle Scholar
Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., Ranjan, D., Anderson, M.H. & Bonazza, R. 2008 A computational parameter study for the three-dimensional shock-bubble interaction. J. Fluid Mech. 594, 85124.CrossRefGoogle Scholar
Nishihara, K., Wouchuk, J.G., Matsuoka, C., Ishizaki, R. & Zhakhovsky, V.V. 2010 Richtmyer–Meshkov instability: theory of linear and nonlinear evolution. Phil. Trans. R. Soc. Lond. A 368, 17691807.Google ScholarPubMed
Noble, C.D. 2022 High-speed measurements of mixing due to the Richtmyer–Meshkov instability in a twice-shocked gas interface. PhD thesis, The University of Wisconsin-Madison.Google Scholar
Noble, C.D., Herzog, J.M., Ames, A.M., Oakley, J., Rothamer, D.A. & Bonazza, R. 2020 High speed PLIF study of the Richtmyer–Meshkov instability upon re-shock. Physica D 410, 132519.CrossRefGoogle Scholar
Ofer, D., Alon, U., Shvarts, D., McCrory, R.L. & Verdon, C.P. 1996 Modal model for the nonlinear multimode Rayleigh–Taylor instability. Phys. Plasmas 3 (8), 30733090.CrossRefGoogle Scholar
Ofer, D., Shvarts, D., Zinamon, Z. & Orszag, S.A. 1992 Mode coupling in nonlinear Rayleigh–Taylor instability. Phys. Fluids B 4 (11), 35493561.CrossRefGoogle Scholar
Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. & Shvarts, D. 2001 Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas 8, 28832889.CrossRefGoogle Scholar
Pandian, A., Stellingwerf, R.F. & Abarzhi, S.I. 2017 Effect of a relative phase of waves constituting the initial perturbation and the wave interference on the dynamics of strong-shock-driven Richtmyer–Meshkov flows. Phys. Rev. Fluids 2 (7), 073903.CrossRefGoogle Scholar
Peterson, J.L., Casey, D.T., Hurricane, O.A., Raman, K.S., Robey, H.F. & Smalyuk, V.A. 2015 Validating hydrodynamic growth in National Ignition Facility implosions. Phys. Plasmas 22 (5), 056309.CrossRefGoogle Scholar
Plesset, M.S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 9698.CrossRefGoogle Scholar
Quirk, J.J. & Karni, S. 1996 On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318, 129163.CrossRefGoogle Scholar
Rayleigh, Lord 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170177.Google Scholar
Remington, B.A., Weber, S.V., Marinak, M.M., Haan, S.W., Kilkenny, J.D., Wallace, R.J. & Dimonte, G. 1995 Single-mode and multimode Rayleigh–Taylor experiments on nova. Phys. Plasmas 2 (1), 241255.CrossRefGoogle Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13, 297319.CrossRefGoogle Scholar
Rikanati, A., Alon, U. & Shvarts, D. 1998 Vortex model for the nonlinear evolution of the multimode Richtmyer–Meshkov instability at low Atwood numbers. Phys. Rev. E 58, 74107418.CrossRefGoogle Scholar
Rikanati, A., Oron, D., Sadot, O. & Shvarts, D. 2003 High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer–Meshkov instability. Phys. Rev. E 67, 026307.CrossRefGoogle ScholarPubMed
Sadot, O., Erez, L., Alon, U., Oron, D., Levin, L.A., Erez, G., Ben-Dor, G. & Shvarts, D. 1998 Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer–Meshkov instability. Phys. Rev. Lett. 80, 16541657.CrossRefGoogle Scholar
Sembian, S. & Liverts, M. 2020 On using converging shock waves for pressure amplification in shock tubes. Metrologia 57 (3), 035008.CrossRefGoogle Scholar
Sembian, S., Liverts, M. & Apazidis, N. 2018 Plane blast wave interaction with an elongated straight and inclined heat-generated inhomogeneity. J. Fluid Mech. 851, 245267.CrossRefGoogle Scholar
Shen, H. & Parsani, M. 2017 The role of multidimensional instabilities in direct initiation of gaseous detonations in free space. J. Fluid Mech. 813, R4.CrossRefGoogle Scholar
Shen, H. & Wen, C.-Y. 2016 A characteristic space-time conservation element and solution element method for conservation laws. II. Multidimensional extension. J. Comput. Phys. 305 (C), 775792.CrossRefGoogle Scholar
Shen, H., Wen, C.-Y., Liu, K.X. & Zhang, D.L. 2015 a Robust high-order space-time conservative schemes for solving conservation laws on hybrid meshes. J. Comput. Phys. 281, 375402.CrossRefGoogle Scholar
Shen, H., Wen, C.Y., Parsani, M. & Shu, C.W. 2017 Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids. J. Comput. Phys. 330, 668692.CrossRefGoogle Scholar
Shen, H., Wen, C.-Y. & Zhang, D.L. 2015 b A characteristic space-time conservation element and solution element method for conservation laws. J. Comput. Phys. 288, 101118.CrossRefGoogle Scholar
Shyue, K.M. 1998 An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142 (1), 208242.CrossRefGoogle Scholar
Si, T., Long, T., Zhai, Z. & Luo, X. 2015 Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech. 784, 225251.CrossRefGoogle Scholar
Si, T., Zhai, Z. & Luo, X. 2014 a Experimental study of Richtmyer–Meshkov instability in a cylindrical converging shock tube. Laser Part. Beams 32, 343351.CrossRefGoogle Scholar
Si, T., Zhai, Z., Luo, X. & Yang, J. 2014 b Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves. Shock Waves 24, 39.CrossRefGoogle Scholar
Smalyuk, V.A., et al. 2014 First measurements of hydrodynamic instability growth in indirectly driven implosions at ignition-relevant conditions on the national ignition facility. Phys. Rev. Lett. 112 (18), 185003.CrossRefGoogle ScholarPubMed
Srebro, Y., Elbaz, Y., Sadot, O., Arazi, L. & Shvarts, D. 2003 A general buoyancy-drag model for the evolution of the Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Laser Part. Beams 21, 347353.CrossRefGoogle Scholar
Sun, R., Ding, J., Zhai, Z., Si, T. & Luo, X. 2020 Convergent Richtmyer–Meshkov instability of heavy gas layer with perturbed inner surface. J. Fluid Mech. 902, A3.CrossRefGoogle Scholar
Tang, J., Zhang, F., Luo, X. & Zhai, Z. 2021 Effect of atwood number on convergent Richtmyer–Meshkov instability. Acta Mechanica Sin. 37 (3), 434446.CrossRefGoogle Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192196.Google Scholar
Thornber, B. 2016 Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer–Meshkov instability. Phys. Fluids 28 (4), 045106.CrossRefGoogle Scholar
Thornber, B., Drikakis, D., Youngs, D.L. & Williams, R.J.R. 2010 The influence of initial condition on turbulent mixing due to Richtmyer–Meshkov instability. J. Fluid Mech. 654, 99139.CrossRefGoogle Scholar
Thornber, B., et al. 2017 Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: the $\theta$-group collaboration. Phys. Fluids 29 (10), 105107.CrossRefGoogle Scholar
Toro, E.F., Spruce, M. & Speares, W. 1994 Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4 (1), 2534.CrossRefGoogle Scholar
Tubbs, D.L., Barnes, C.W., Beck, J.B., Hoffman, N.M., Oertel, J.A., Watt, R.G., Boehly, T., Bradley, D., Jaanimagi, P. & Knauer, J. 1999 Cylindrical implosion experiments using laser direct drive. Phys. Plasmas 6 (5), 20952104.CrossRefGoogle Scholar
Vandenboomgaerde, M., Gauthier, S. & Mügler, C. 2002 Nonlinear regime of a multimode Richtmyer–Meshkov instability: a simplified perturbation theory. Phys. Fluids 14 (3), 11111122.CrossRefGoogle Scholar
Vandenboomgaerde, M., Rouzier, P., Souffland, D., Biamino, L., Jourdan, G., Houas, L. & Mariani, C. 2018 a Nonlinear growth of the converging Richtmyer–Meshkov instability in a conventional shock tube. Phys. Rev. Fluids 3, 014001.CrossRefGoogle Scholar
Vandenboomgaerde, M., Rouzier, P., Souffland, D., Mariani, C., Biamino, L., Jourdan, G. & Houas, L. 2018 b Experimental, numerical and theoretical investigation of the converging Richtmyer–Meshkov instability in a conventional shock tube. In 16th International Workshop on the Physics of Compressible Turbulent Mixing.CrossRefGoogle Scholar
Velikovich, A.L. & Dimonte, G. 1996 Nonlinear perturbation theory of the incompressible Richtmyer–Meshkov instability. Phys. Rev. Lett. 76 (17), 3112.CrossRefGoogle ScholarPubMed
Wang, L., Wu, J., Guo, H., Ye, W., Liu, J., Zhang, W. & He, X. 2015 Weakly nonlinear Bell–Plesset effects for a uniformly converging cylinder. Phys. Plasmas 22 (8), 082702.Google Scholar
Wang, L.F., Wu, J.F., Ye, W.H., Zhang, W.Y. & He, X.T. 2013 Weakly nonlinear incompressible Rayleigh–Taylor instability growth at cylindrically convergent interfaces. Phys. Plasmas 20, 042708.Google Scholar
Whitham, G.B. 1958 On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid Mech. 4, 337360.CrossRefGoogle Scholar
Wouchuk, J.G. & Nishihara, K. 1997 Asymptotic growth in the linear Richtmyer–Meshkov instability. Phys. Plasmas 4 (4), 10281038.CrossRefGoogle Scholar
Wu, J., Liu, H. & Xiao, Z. 2021 Refined modelling of the single-mode cylindrical Richtmyer–Meshkov instability. J. Fluid Mech. 908, A9.CrossRefGoogle Scholar
Yan, Z., Fu, Y., Wang, L., Yu, C. & Li, X. 2022 Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer–Meshkov instability. J. Fluid Mech. 941, A55.CrossRefGoogle Scholar
Zhai, Z., Li, W., Si, T., Luo, X., Yang, J. & Lu, X. 2017 Refraction of cylindrical converging shock wave at an air/helium gaseous interface. Phys. Fluids 29 (1), 016102.CrossRefGoogle Scholar
Zhai, Z., Liang, Y., Liu, L., Ding, J., Luo, X. & Zou, L. 2018 a Interaction of rippled shock wave with flat fast-slow interface. Phys. Fluids 30 (4), 046104.CrossRefGoogle Scholar
Zhai, Z., Liu, C., Qin, F., Yang, J. & Luo, X. 2010 Generation of cylindrical converging shock waves based on shock dynamcis theory. Phys. Fluids 22, 041701.CrossRefGoogle Scholar
Zhai, Z., Ou, J. & Ding, J. 2019 a Coupling effect on shocked double-gas cylinder evolution. Phys. Fluids 31 (9), 096104.CrossRefGoogle Scholar
Zhai, Z., Si, T., Luo, X., Yang, J., Liu, C., Tan, D. & Zou, L. 2012 Parametric study of cylindrical converging shock waves generated based on shock dynamics theory. Phys. Fluids 24, 026101.CrossRefGoogle Scholar
Zhai, Z., Zhang, F., Zhou, Z., Ding, J. & Wen, C.-Y. 2019 b Numerical study on Rayleigh–Taylor effect on cylindrically converging Richtmyer–Meshkov instability. Sci. China Phys. Mech. 62 (12), 110.CrossRefGoogle Scholar
Zhai, Z., Zou, L., Wu, Q. & Luo, X. 2018 b Review of experimental Richtmyer–Meshkov instability in shock tube: from simple to complex. Proc. Inst. Mech. Engrs 232, 28302849.Google Scholar
Zhang, Q. & Graham, M.J. 1997 Scaling laws for unstable interfaces driven by strong shocks in cylindrical geometry. Phys. Rev. Lett. 79, 26742677.CrossRefGoogle Scholar
Zhang, Q. & Graham, M.J. 1998 A numerical study of Richtmyer–Meshkov instability driven by cylindrical shocks. Phys. Fluids 10, 974992.CrossRefGoogle Scholar
Zhang, Q. & Sohn, S.I. 1997 Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9, 11061124.CrossRefGoogle Scholar
Zhao, Z., Wang, P., Liu, N. & Lu, X. 2021 Scaling law of mixing layer in cylindrical Rayleigh–Taylor turbulence. Phys. Rev. E 104 (5), 055104.CrossRefGoogle ScholarPubMed
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720-722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1160.Google Scholar
Zhou, Y., Cabot, W.H. & Thornber, B. 2016 Asymptotic behavior of the mixed mass in Rayleigh–Taylor and Richtmyer–Meshkov instability induced flows. Phys. Plasmas 23 (5), 052712.CrossRefGoogle Scholar
Zhou, Y., Clark, T.T., Clark, D.S., Glendinning, S.S., Skinner, A.A., Huntington, C., Hurricane, O.A., Dimits, A.M. & Remington, B.A. 2019 Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 26 (8), 080901.CrossRefGoogle Scholar
Zhou, Y., Groom, M. & Thornber, B. 2020 a Dependence of enstrophy transport and mixed mass on dimensionality and initial conditions in the Richtmyer–Meshkov instability induced flows. Trans. ASME J. Fluids Engng 142 (12), 121104.CrossRefGoogle Scholar
Zhou, Y., et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D 423, 132838.CrossRefGoogle Scholar
Zhou, Z., Ding, J., Zhai, Z., Cheng, W. & Luo, X. 2020 b Mode coupling in converging Richtmyer–Meshkov instability of dual-mode interface. Acta Mechanica Sin. 36 (2), 356366.CrossRefGoogle Scholar
Zou, L., Al-Marouf, M., Cheng, W., Samtaney, R., Ding, J. & Luo, X. 2019 Richtmyer–Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock. J. Fluid Mech. 879, 448467.CrossRefGoogle Scholar