Skip to main content Accessibility help

Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow

  • Bhargav Rallabandi (a1), Sascha Hilgenfeldt (a2) and Howard A. Stone (a1)


For a small sphere suspended in a background fluid flow near an obstacle, we calculate the hydrodynamic force on the sphere in the direction normal to the boundary of the obstacle. Using the Lorentz reciprocal theorem, we obtain analytical expressions for the normal force in the Stokes flow limit, valid for arbitrary separations of the particle from the obstacle, both for solid obstacles and those with free surfaces. The main effect of the boundary is to produce a normal force proportional to extensional flow gradients in the vicinity of the particle. The strength of this force is greatest when the separation between the surfaces of the particle and the obstacle is small relative to the particle size. While the magnitude of the force weakens for large separations between the sphere and the obstacle (decaying quadratically with separation distance), it can significantly modify Faxén’s law even at modestly large separation distances. In addition, we find a second force contribution due to the curvature of the background flow normal to the obstacle, which is also important when the sphere is close to the obstacle. The results of the theory are of importance to the dynamics of particles in confined geometries, whether bounded by a solid obstacle, the wall of a channel or a gas bubble.


Corresponding author

Email addresses for correspondence:,


Hide All
Adamczyk, Z., Adamczyk, M. & Van de Ven, T. G. M. 1983 Resistance coefficient of a solid sphere approaching plane and curved boundaries. J. Colloid Interface Sci. 96 (1), 204213.
Aponte-Rivera, C. & Zia, R. N. 2016 Simulation of hydrodynamically interacting particles confined by a spherical cavity. Phys. Rev. Fluids 1 (2), 023301.
Asmolov, E. S. 1995 Dusty-gas flow in a laminar boundary layer over a blunt body. J. Fluid Mech. 305, 2946.
Asmolov, E. S. & McLaughlin, J. B. 1999 The inertial lift on an oscillating sphere in a linear shear flow. Intl J. Multiphase Flow 25 (4), 739751.
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41 (03), 545570.
Batchelor, G. K. & Green, J. T. 1972a The determination of the bulk stress in a suspension of spherical particles to order c 2 . J. Fluid Mech. 56 (03), 401427.
Batchelor, G. K. & Green, J. T. 1972b The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56 (02), 375400.
Becker, L. E., McKinley, G. H. & Stone, H. A. 1996 Sedimentation of a sphere near a plane wall: weak non-Newtonian and inertial effects. J. Non-Newtonian Fluid Mech. 63 (2), 201233.
Bhattacharya, S., Bławzdziewicz, J. & Wajnryb, E. 2006 Far-field approximation for hydrodynamic interactions in parallel-wall geometry. J. Comput. Phys. 212 (2), 718738.
Bossis, G., Meunier, A. & Sherwood, J. D. 1991 Stokesian dynamics simulations of particle trajectories near a plane. Phys. Fluids 3 (8), 18531858.
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3), 242251.
Cardinaels, R. & Stone, H. A. 2015 Lubrication analysis of interacting rigid cylindrical particles in confined shear flow. Phys. Fluids 27 (7), 072001.
Cox, R. G. & Brenner, H. 1967 The slow motion of a sphere through a viscous fluid towards a plane surface. II. Small gap widths, including inertial effects. Chem. Engng Sci. 22 (12), 17531777.
Dance, S. L. & Maxey, M. R. 2003 Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comput. Phys. 189 (1), 212238.
Dean, W. R. & O’Neill, M. E. 1963 A slow motion of viscous liquid caused by the rotation of a solid sphere. Mathematika 10 (01), 1324.
Durlofsky, L., Brady, J. F. & Bossis, G. 1987 Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180, 2149.
Feuillebois, F., Ekiel-Jeżewska, M. L., Wajnryb, E., Sellier, A. & Bławzdziewicz, J. 2015 High-frequency viscosity of a dilute suspension of elongated particles in a linear shear flow between two walls. J. Fluid Mech. 764, 133147.
Gallier, S., Lemaire, E., Lobry, L. & Peters, F. 2016 Effect of confinement in wall-bounded non-colloidal suspensions. J. Fluid Mech. 799, 100127.
Giddings, J. C., Yang, F. J. & Myers, M. N. 1976 Flow-field-flow fractionation: a versatile new separation method. Science 193 (4259), 12441245.
Goldman, A. J., Cox, R. G. & Brenner, H. 1966 The slow motion of two identical arbitrarily oriented spheres through a viscous fluid. Chem. Engng Sci. 21 (12), 11511170.
Goldman, A. J., Cox, R. G. & Brenner, H. 1967a Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid. Chem. Engng Sci. 22 (4), 637651.
Goldman, A. J., Cox, R. G. & Brenner, H. 1967b Slow viscous motion of a sphere parallel to a plane wall. II. Couette flow. Chem. Engng Sci. 22 (4), 653660.
Goren, S. L. & O’Neill, M. E. 1971 On the hydrodynamic resistance to a particle of a dilute suspension when in the neighbourhood of a large obstacle. Chem. Engng Sci. 26 (3), 325338.
Haber, S. & Brenner, H. 1999 Hydrodynamic interactions of spherical particles in quadratic Stokes flows. Intl J. Multiphase Flow 25 (6), 10091032.
Haddadi, H. & Morris, J. F. 2015 Topology of pair-sphere trajectories in finite inertia suspension shear flow and its effects on microstructure and rheology. Phys. Fluids 27 (4), 043302.
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics with Special Application to Particulate Media. Prentice-Hall.
Hinch, E. J. 1977 An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83, 695720.
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65 (02), 365400.
Hogg, A. J. 1994 The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear flows. J. Fluid Mech. 272, 285318.
Hood, K., Lee, S. & Roper, M. 2015 Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. J. Fluid Mech. 765, 452479.
Izard, E., Bonometti, T. & Lacaze, L. 2014 Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid. J. Fluid Mech. 747, 422446.
Jeffrey, D. J. 1992 The calculation of the low Reynolds number resistance functions for two unequal spheres. Phys. Fluids 4 (1), 1629.
Jeffrey, D. J. & Onishi, Y. 1981 The slow motion of a cylinder next to a plane wall. Q. J. Mech. Appl. Maths 34 (2), 129137.
Jeffrey, D. J. & Onishi, Y. 1984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261290.
Kempe, T. & Fröhlich, J. 2012a Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. J. Fluid Mech. 709, 445489.
Kempe, T. & Fröhlich, J. 2012b An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231 (9), 36633684.
Ladd, A. J. C. & Verberg, R. 2001 Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104 (5–6), 11911251.
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12 (1), 435476.
Lovalenti, P. M. & Brady, J. F. 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256, 561605.
Lovalenti, P. M. & Brady, J. F. 1995 The temporal behaviour of the hydrodynamic force on a body in response to an abrupt change in velocity at small but finite Reynolds number. J. Fluid Mech. 293, 3546.
Maude, A. D. 1961 End effects in a falling-sphere viscometer. Brit. J. Appl. Phys. 12 (6), 293295.
McLaughlin, J. B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.
McLaughlin, J. B. 1993 The lift on a small sphere in wall-bounded linear shear flows. J. Fluid Mech. 246, 249265.
Nadim, A. & Stone, H. A. 1991 The motion of small particles and droplets in quadratic flows. Stud. Appl. Maths 85 (1), 5373.
Nguyen, N.-Q. & Ladd, A. J. C. 2002 Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66 (4), 046708.
Nir, A. & Acrivos, A. 1973 On the creeping motion of two arbitrary-sized touching spheres in a linear shear field. J. Fluid Mech. 59 (02), 209223.
O’Neill, M. E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11 (01), 6774.
O’Neill, M. E. & Stewartson, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27 (04), 705724.
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (02), 385400.
Sangani, A. S., Acrivos, A. & Peyla, P. 2011 Roles of particle-wall and particle-particle interactions in highly confined suspensions of spherical particles being sheared at low Reynolds numbers. Phys. Fluids 23 (8), 083302.
Segré, G. & Silberberg, A. 1962 Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech. 14 (1), 136157.
Sierou, A. & Brady, J. F. 2001 Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448, 115146.
Stimson, M. & Jeffery, G. B. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111 (757), 110116.
Swan, J. W. & Brady, J. F. 2007 Simulation of hydrodynamically interacting particles near a no-slip boundary. Phys. Fluids 19 (11), 113306.
Swan, J. W. & Brady, J. F. 2011 The hydrodynamics of confined dispersions. J. Fluid Mech. 687, 254299.
Vasseur, P. & Cox, R. G. 1977 The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. J. Fluid Mech. 80 (03), 561591.
Zurita-Gotor, M., Bławzdziewicz, J. & Wajnryb, E. 2007 Swapping trajectories: a new wall-induced cross-streamline particle migration mechanism in a dilute suspension of spheres. J. Fluid Mech. 592, 447469.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow

  • Bhargav Rallabandi (a1), Sascha Hilgenfeldt (a2) and Howard A. Stone (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.