Skip to main content Accessibility help

How we compute N matters to estimates of mixing in stratified flows

  • Robert S. Arthur (a1), Subhas K. Venayagamoorthy (a2) (a3), Jeffrey R. Koseff (a3) and Oliver B. Fringer (a3)


Most commonly used models for turbulent mixing in the ocean rely on a background stratification against which turbulence must work to stir the fluid. While this background stratification is typically well defined in idealized numerical models, it is more difficult to capture in observations. Here, a potential discrepancy in ocean mixing estimates due to the chosen calculation of the background stratification is explored using direct numerical simulation data of breaking internal waves on slopes. Two different methods for computing the buoyancy frequency $N$ , one based on a three-dimensionally sorted density field (often used in numerical models) and the other based on locally sorted vertical density profiles (often used in the field), are used to quantify the effect of $N$ on turbulence quantities. It is shown that how $N$ is calculated changes not only the flux Richardson number $R_{f}$ , which is often used to parameterize turbulent mixing, but also the turbulence activity number or the Gibson number $Gi$ , leading to potential errors in estimates of the mixing efficiency using $Gi$ -based parameterizations.


Corresponding author

Email address for correspondence:


Hide All
Arthur, R. S., Koseff, J. R. & Fringer, O. B. 2017 Local versus volume-integrated turbulence and mixing in breaking internal waves on slopes. J. Fluid Mech. 815, 169198.
Barry, M. E.2002 Mixing in stratified turbulence. PhD thesis, University of Western Australia, Centre for Water Research.
Bouffard, D. & Boegman, L. 2013 A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans 61, 1434.
Davis, K. A. & Monismith, S. G. 2011 The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J. Phys. Oceanogr. 41 (11), 22232241.
Dillon, T. M. 1982 Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. Geophys. Res. 87 (C12), 96019613.
Hult, E. L., Troy, C. D. & Koseff, J. R. 2011 The mixing efficiency of interfacial waves breaking at a ridge: 2. Local mixing processes. J. Geophys. Res. 116, C02004.
Ivey, G. N. & Imberger, J. 1991 On the nature of turbulence in a stratified fluid. Part I: the energetics of mixing. J. Phys. Oceanogr. 21 (5), 650658.
Ivey, G. N., Winters, K. B. & Koseff, J. R. 2008 Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech. 40, 169184.
Mater, B. D., Schaad, S. M. & Venayagamoorthy, S. K. 2013 Relevance of the Thorpe length scale in stably stratified turbulence. Phys. Fluids 25, 076604.
Mater, B. D. & Venayagamoorthy, S. K. 2014a The quest for an unambiguous parameterization of mixing efficiency in stably stratified geophysical flows. Geophys. Res. Lett. 41 (13), 46464653.
Mater, B. D. & Venayagamoorthy, S. K. 2014b A unifying framework for parameterizing stably stratified shear-flow turbulence. Phys. Fluids 26 (3), 036601.
Monismith, S. G., Koseff, J. R., Walter, R. K., Squibb, M., Pawlak, G., Davis, K. A. & Dunckley, J. 2017 Buoyancy fluxes in stratified flows: observations and parameterizations. J. Phys. Oceanogr. (submitted).
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res. 45 (12), 19772010.
Osborn, T. R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10 (1), 8389.
Osborn, T. R. & Cox, C. S. 1972 Oceanic fine structure. Geophys. Fluid Dyn. 3 (1), 321345.
Scotti, A. & White, B. 2014 Diagnosing mixing in stratified turbulent flows with a locally defined available potential energy. J. Fluid Mech. 740, 114135.
Shih, L. H., Koseff, J. R., Ivey, G. N. & Ferziger, J. H. 2005 Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193214.
Smyth, W. D., Moum, J. N. & Caldwell, D. R. 2001 The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr. 31 (8), 19691992.
Thorpe, S. A. 1977 Turbulence and mixing in a Scottish loch. Phil. Trans. R. Soc. Lond. 286 (1334), 125181.
Thorpe, S. A. 2005 The Turbulent Ocean. Cambridge University Press.
Venayagamoorthy, S. K. & Koseff, J. R. 2016 On the flux Richardson number in stably stratified turbulence. J. Fluid Mech. 798, R1.
Walter, R. K., Squibb, M. E., Woodson, C. B., Koseff, J. R. & Monismith, S. G. 2014 Stratified turbulence in the nearshore coastal ocean: dynamics and evolution in the presence of internal bores. J. Geophys. Res. 119 (12), 87098730.
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

How we compute N matters to estimates of mixing in stratified flows

  • Robert S. Arthur (a1), Subhas K. Venayagamoorthy (a2) (a3), Jeffrey R. Koseff (a3) and Oliver B. Fringer (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.