Skip to main content Accessibility help
×
Home

Helical-wave decomposition and applications to channel turbulence with streamwise rotation

  • Y.-T. YANG (a1), W.-D. SU (a1) and J.-Z. WU (a1)

Abstract

Using helical-wave decomposition (HWD), a solenoidal vector field can be decomposed into helical modes with different wavenumbers and polarities. Here, we first review the general formulation of HWD in an arbitrary single-connected domain, along with some new development. We then apply the theory to a viscous incompressible turbulent channel flow with system rotation, including a derivation of helical bases for a channel domain. By these helical bases, we construct the inviscid inertial-wave (IW) solutions in a rotating channel and derive their existing condition. The condition determines the specific wavenumber and polarity of the IW. For a set of channel turbulent flows rotating about a streamwise axis, this channel-domain HWD is used to decompose the flow data obtained by direct numerical simulation. The numerical results indicate that the streamwise rotation induces a polarity-asymmetry and concentrates the fluctuating energy to particular helical modes. At large rotation rates, the energy spectra of opposite polarities exhibit different scaling laws. The nonlinear energy transfer between different helical modes is also discussed. Further investigation reveals that the IWs do exist when the streamwise rotation is strong enough, for which the theoretical predictions and numerical results are in perfect agreement in the core region. The wavenumber and polarity of the IW coincide with that of the most energetic helical modes in the energy spectra. The flow visualizations show that away from the channel walls, the small vortical structures are clustered to form very long columns, which move in the wall-parallel plane and serve as the carrier of the IW. These discoveries also help clarify certain puzzling problems raised in previous studies of streamwise-rotating channel turbulence.

Copyright

Corresponding author

Email address for correspondence: yytmech@pku.edu.cn

References

Hide All
Alkishriwi, N., Meinke, M. & Schröder, M. 2008 Large-eddy simulation of streamwise-rotating turbulent channel flow. Comput. Fluids 37 (7), 786792.
Bartello, P., Métais, O. & Lesieur, M. 1994 Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 129.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bellet, F., Godeferd, F. S., Scott, J. F. & Cambon, C. 2006 Wave turbulence in rapidly rotating flows. J. Fluid Mech. 562, 83121.
Bewley, G. P., Lathrop, D. P., Maas, L. R. M. & Sreenivasan, K. R. 2007 Inertial waves in rotating grid turbulence. Phys. Fluids 19 (7), 071701.
Boulmezaoud, T. Z. & Amari, T. 2000 Approximation of linear force-free fields in bounded 3-D domains. Math. Comput. Modelling 31 (2–3), 109129.
Bourouiba, L. 2008 Model of a truncated fast rotating flow at infinite Reynolds number. Phys. Fluids 20, 075112.
Bourouiba, L. & Bartello, P. 2007 The intermediate Rossby number range and two-dimensional–three-dimensional transfers in rotating decaying homogeneous turbulence. J. Fluid Mech. 587, 139161.
Chandrasekhar, S. & Kendall, P. C. 1957 On force-free magnetic fields. Astrophys. J. 126, 457460.
Chen, Q. N., Chen, S. Y. & Eyink, G. L. 2003 The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15 (2), 361374.
Chen, Q. N., Chen, S. Y., Eyink, G. L. & Holm, D. D. 2005 Resonant interactions in rotating homogeneous three-dimensional turbulence. J. Fluid Mech. 542, 139164.
Davidson, P. A., Staplehurst, P. J. & Dalziel, S. B. 2006 On the evolution of eddies in a rapidly rotating system. J. Fluid Mech. 557, 135144.
Ditlevsen, P. D. & Giuliani, P. 2001 a Cascades in helical turbulence. Phys. Rev. E 63 (3), 036304.
Ditlevsen, P. D. & Giuliani, P. 2001 b Dissipation in helical turbulence. Phys. Fluids 13 (11), 35083509.
Greenspan, H. P. 1969 The Theory of Rotating Fluids. Cambridge University Press.
Grundestam, O., Wallin, S. & Johansson, A. V. 2008 Direct numerical simulations of rotating turbulent channel flow. J. Fluid Mech. 598, 177199.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Johnston, J. P., Halleen, R. M. & Lezius, D. K. 1972 Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech. 56, 533557.
Kelley, D. H., Triana, S. A., Zimmerman, D. S. & Lathrop, D. P. 2010 Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 026311.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully-developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Kraichnan, R. H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745752.
Kristoffersen, R. & Andersson, H. 1993 Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech. 256, 163197.
Maas, L. R. M. 2003 On the amphidromic structure of inertial waves in a rectangular parallelepiped. Fluid Dyn. Res. 33 (4), 373401.
Masuda, S., Fukuda, S. & Nagata, M. 2008 Instabilities of plane Poiseuille flow with a streamwise system rotation. J. Fluid Mech. 603, 189206.
Melander, M. V. & Hussain, F. 1993 a Coupling between a coherent structure and fine-scale turbulence. Phys. Rev. E 48 (4), 26692689.
Melander, M. V. & Hussain, F. 1993 b Polarized vorticity dynamics on a vortex column. Phys. Fluids A 5 (8), 19922003.
Mininni, P. D., Alexakis, A. & Pouquet, A. 2009 Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids 21 (1), 015108.
Mininni, P. D. & Montgomery, D. C. 2006 Magnetohydrodynamic activity inside a sphere. Phys. Fluids 18 (11), 116602.
Mininni, P. D., Montgomery, D. C. & Turner, L. 2007 Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere. New J. Phys. 9 (8), 303.
Moisy, F., Morize, C., Rabaud, M. & Sommeria, J. 2010 Anisotropy and cyclone-anticyclone asymmetry in decaying rotating turbulence. J. Fluid Mech. (in press). Accessible at: http://arxiv.org/abs/0909.2599, doi:10.1017/S0022112010003733
Morize, C., Moisy, F. & Rabaud, M. 2005 Decaying grid-generated turbulence in a rotating tank. Phys. Fluids 17 (9), 095105.
Morse, E. C. 2005 Eigenfunctions of the curl in cylindrical geometry. J. Math. Phys. 46 (11), 113511.
Morse, E. C. 2007 Eigenfunctions of the curl in annular cylindrical and rectangular geometry. J. Math. Phys. 48 (8), 083504.
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics. McGraw-Hill.
Nakabayashi, K. & Kitoh, O. 1996 Low Reynolds number fully developed two-dimensional turbulent channel flow with system rotation. J. Fluid Mech. 315, 129.
Nakabayashi, K. & Kitoh, O. 2005 Turbulence characteristics of two-dimensional channel flow with system rotation. J. Fluid Mech. 528, 355377.
Oberlack, M., Cabot, W., Pettersson Reif, B. A. & Weller, T. 2006 Group analysis, direct numerical simulation and modelling of a turbulent channel flow with streamwise rotation. J. Fluid Mech. 562, 383403.
Orlandi, P. & Fatica, M. 1997 Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343, 4372.
Phillips, O. M. 1963 Energy transfer in rotating fluids by reflection of inertial waves. Phys. Fluids 6 (4), 513520.
Recktenwald, I., Alkishriwi, N. & Schröder, W. 2009 PIV–LES analysis of channel flow rotating about the streamwise axis. Eur. J. Mech. B Fluids 28 (5), 677688.
Recktenwald, I., Weller, T., Schröder, W. & Oberlack, M. 2007 Comparison of direct numerical simulations and particle-image velocimetry data of turbulent channel flow rotating about the streamwise axis. Phys. Fluids 19 (8), 085114.
Shan, X. W. & Montgomery, D. 1994 Magnetohydrodynamic stabilization through rotation. Phys. Rev. Lett. 73 (12), 16241627.
Smith, L. M. & Lee, Y. 2005 On near resonances and symmetry breaking in forced rotating flows at moderate Rossby number. J. Fluid Mech. 535, 111142.
Smith, L. M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 16081622.
Staplehurst, P. J., Davidson, P. A. & Dalziel, S. B. 2008 Structure formation in homogeneous freely decaying rotating turbulence. J. Fluid Mech. 598, 81105.
Thiele, M. & Müller, W. 2009 Structure and decay of rotating homogeneous turbulence. J. Fluid Mech. 637, 425442.
Turner, L. 1999 Macroscopic structures of inhomogeneous, Navier–Stokes turbulence. Phys. Fluids 11 (8), 23672380.
Turner, L. 2000 Using helicity to characterize homogeneous and inhomogeneous turbulent dynamics. J. Fluid Mech. 408, 205238.
Ulitsky, M., Clark, T. & Turner, L. 1999 Testing a random phase approximation for bounded turbulents flow. Phys. Rev. E 59 (5), 55115522.
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350363.
Waleffe, F. 1993 Inertial transfers in the helical decomposition. Phys. Fluids A 5 (3), 677685.
Wu, H. & Kasagi, N. 2004 Effects of arbitrary directional system rotation on turbulent channel flow. Phys. Fluids 16 (4), 979990.
Wu, J. Z., Ma, H. Y. & Zhou, M. D. 2006 Vorticity and Vortex Dynamics. Springer.
Yang, Y. T. 2009 Local dynamics and multi-scales interaction in complex shearing flows. PhD thesis, Peking University, Beijing, China (in Chinese).
Yeung, P. K. & Zhou, Y. 1998 Numerical study of rotating turbulence with external forcing. Phys. Fluids 10 (11), 28952909.
Yoshida, Z. & Giga, Y. 1990 Remarks on spectra of operator rot. Math. Z. 204, 235245.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Helical-wave decomposition and applications to channel turbulence with streamwise rotation

  • Y.-T. YANG (a1), W.-D. SU (a1) and J.-Z. WU (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed