Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-10T22:52:42.564Z Has data issue: false hasContentIssue false

A Hamiltonian structure with contact geometry for the semi-geostrophic equations

Published online by Cambridge University Press:  26 April 2006

I. Roulstone
Affiliation:
Forecasting Research Division, Meteorological Office, London Road, Bracknell, Berkshire, RG12 2SZ, UK
J. Norbury
Affiliation:
Mathematical Institute, 24–29 St. Giles, Oxford, OX1 3LB, UK

Abstract

A canonical Hamiltonian structure for the semi-geostrophic equations is presented and from this a reduced non-canonical Hamiltonian structure is derived, providing a fully nonlinear version of the approximate linearized vorticity advection representation. The structure of this model is described naturally within the framework of contact geometry. A Hamiltonian approach leading to a symplectic algorithm for calculating solutions to the equations of motion is formulated. Basic necessary functional methods are introduced and the Lagrangian and Eulerian kinematic structures are discussed, together with their relevance to symplectic integrating algorithms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, H. D. I. & Holm, D. D. 1987 Nonlinear stability analysis of inviscid flows in three dimensions: Incompressible fluids and barotropic fluids. Phys. Fluids 30, 33693382.CrossRefGoogle Scholar
Abarbanel, H. D. I., Holm, D. D., Marsden, J. E. & Ratiu, T. 1986 Nonlinear stability analysis of stratified fluid equilibria. Phil. Trans. R. Soc. Lond. A 318, 349409.Google Scholar
Abraham, R. & Marsden, J. E. 1985 Foundations of Mechanics. Addison Wesley.Google Scholar
Arnol’d, V. I. 1989 Mathematical Methods of Classical Mechanics. Springer.10.1007/978-1-4757-2063-1CrossRefGoogle Scholar
Blumen, W. 1981 The geostrophic coordinate transformation. J. Atmos. Sci. 38, 11001105.Google Scholar
Burke, W. L. 1985 Applied Differential Geometry. Cambridge University Press.10.1017/CBO9781139171786CrossRefGoogle Scholar
Carathèodory, C. 1992 Calculus of Variations, 2nd edn. Chelsea.Google Scholar
Channell, S. & Scovel, C. 1990 Symplectic integration of Hamiltonian systems. Nonlinearity 3, 231259.Google Scholar
Chynoweth, S. 1987 The semi-geostrophic equations and the Legendre transform. PhD thesis, University of Reading, UK.Google Scholar
Chynoweth, S. & Sewell, M. J. 1989 Dual variables in semi-geostrophic theory. Proc. R. Soc. Lond. A 424, 155186.Google Scholar
Chynoweth, S. & Sewell, M. J. 1991 A concise derivation of the semigeostrophic equations. Q. J. R. Met. Soc. 117, 11091128.Google Scholar
Cullen, M. J. P. 1983 Solutions to a model of a front forced by deformation. Q. J. R. Met. Soc. 109, 565573.Google Scholar
Cullen, M. J. P., Norbury, J. & Purser, R. J. 1991 Generalized Lagrangian solutions for atmospheric and oceanic flows. SIAM J. Appl. Maths. 51, 2031.Google Scholar
Cullen, M. J. P., Norbury, J., Purser, R. J. & Shutts, G. J. 1987 Modelling the quasi-equilibrium dynamics of the atmosphere. Q. J. R. Met. Soc. 113, 735757.Google Scholar
Cullen, M. J. P. & Purser, R. J. 1984 An extended Lagrangian theory of semi-geostrophic frontogenesis. J. Atmos. Sci. 41, 14771497.Google Scholar
Feng, K. 1991 The Hamiltonian way for computing Hamiltonian dynamics. In The State of the Act of Industrial and Applied Mathematics (ed. Spigler, R.). Kluwer.Google Scholar
Hoskins, B. J. 1975 The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32, 233242.Google Scholar
Hoskins, B. J. & Bretherton, F. P. 1972 Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29, 1137.Google Scholar
Hoskins, B. J. & Draghici, I. 1977 The forcing of ageostrophic motion according to the semi-geostrophic equations and in an isentropic coordinate model. J. Atmos. Sci. 34, 18591867.Google Scholar
Marsden, J. E. 1992 Lectures on Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Marsden, J. E. & Weinstein, A. 1974 Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121130.Google Scholar
Marsden, J. E. & Weinstein, A. 1983 Coadjoint orbits, vortices and Clebsch variables for incompressible fluids. Physica 7D, 305323.Google Scholar
McLachlan, R. I. 1993 Explicit Lie-Poisson integration and the Euler equations. Phys. Rev. Lett. 71, 30433046.Google Scholar
Olver, P. J. 1982 A nonlinear Hamiltonian structure for the Euler equations. J. Math. Anal. Appl. 89, 233250.Google Scholar
Purser, R. J. 1988 Variational aspects of semi-geostrophic theory. Met. O. 11 Sci. Note 5. Meteorological Office, UK.Google Scholar
Purser, R. J. 1993 Contact transformations and Hamiltonian dynamics in generalized semi-geostrophic theories. J. Atmos. Sci. 50, 14491468.Google Scholar
Purser, R. J. & Cullen, M. J. P. 1987 A duality principle in semi-geostrophic theory. J. Atmos. Sci. 44, 34493468.Google Scholar
Salmon, R. 1985 New equations for nearly geostrophic flow. J. Fluid Mech. 153, 461477.Google Scholar
Salmon, R. 1988a Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20, 225256.Google Scholar
Salmon, R. 1988b Semi-geostrophic theory as a Dirac bracket projection. J. Fluid Mech. 196, 345358.Google Scholar
Schutz, B. F. 1980 Geometrical Methods of Mathematical Physics. Cambridge University Press.10.1017/CBO9781139171540CrossRefGoogle Scholar
Sewell, M. J. & Roulstone, I. 1993a Anatomy of the canonical transformation. Phil. Trans. R. Soc. Lond. A 345, 577598.Google Scholar
Sewell, M. J. & Roulstone, I. 1993b Families of contact transformations. Forecasting Res. Div. Sci. Notes 20. Meteorological Office, UK.Google Scholar
Shepherd, T. G. 1990 Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys. 32, 287338.Google Scholar
Shutts, G. J. 1989 Planetary semi-geostrophic equations derived from Hamilton's principle. J. Fluid Mech. 208, 545573.Google Scholar
Shutts, G. J. & Cullen, M. J. P. 1987 Parcel stability and its relation to semi-geostrophic theory. J. Atmos. Sci. 44, 13181330.Google Scholar