Skip to main content Accessibility help
×
Home

Geostrophic and chimney regimes in rotating horizontal convection with imposed heat flux

  • Catherine A. Vreugdenhil (a1), Ross W. Griffiths (a1) and Bishakhdatta Gayen (a1)

Abstract

Convection in a rotating rectangular basin with differential thermal forcing at one horizontal boundary is examined using laboratory experiments. The experiments have an imposed heat flux boundary condition, are at large values of the flux Rayleigh number ( $Ra_{F}\sim O(10^{13}{-}10^{14})$ based on the box length $L$ ), use water with Prandtl number $Pr\approx 4$ and have a small depth to length aspect ratio. The results show the conditions for transition from non-rotating horizontal convection governed by an inertial–buoyancy balance in the thermal boundary layer, to circulation governed by geostrophic flow in the boundary layer. The geostrophic balance constrains mean flow and reduces the heat transport as Nusselt number $Nu\sim (Ra_{F}Ro)^{1/6}$ , where $Ro=B^{1/2}/f^{3/2}L$ is the convective Rossby number, $B$ is the imposed buoyancy flux and $f$ is the Coriolis parameter. Thus flow in the geostrophic boundary layer regime is governed by the relative roles of horizontal convective accelerations and Coriolis accelerations, or buoyancy and rotation, in the boundary layer. Experimental evidence suggests that for more rapid rotation there is another transition to a regime in which the momentum budget is dominated by fluctuating vertical accelerations in a region of vortical plumes, which we refer to as a ‘chimney’ following related discussion of regions of deep convection in the ocean. Coupling of the chimney convection in the region of destabilising boundary flux to the diffusive boundary layer of horizontal convection in the region of stabilising boundary flux gives heat transport independent of rotation in this ‘inertial chimney’ regime, and the new scaling $Nu\sim Ra_{F}^{1/4}$ . Scaling analysis predicts the transition conditions observed in the experiments, as well as a further ‘geostrophic chimney’ regime in which the vertical plumes are controlled by local geostrophy. When $Ro<10^{-1}$ , the convection is also observed to produce a set of large basin-scale gyres at all depths in the time-averaged flow.

Copyright

Corresponding author

Email address for correspondence: Catherine.Vreugdenhil@anu.edu.au

References

Hide All
Aurnou, J. M., Calkins, M. A., Cheng, J. S., Julien, K., King, E. M., Nieves, D., Soderlund, K. M. & Stellmach, S. 2015 Rotating convective turbulence in earth and planetary cores. Phys. Earth Planet. Inter. 246, 5271.
Baines, W. D. & Turner, J. S. 1969 Turbulent buoyant convection from a source in a confined region. J. Fluid Mech. 37, 5180.
Barkan, R., Winters, K. B. & Llewellyn Smith, S. G. 2013 Rotating horizontal convection. J. Fluid Mech. 723, 556586.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Boubnov, B. M. 1984 Laboratory model of convection in a rotating annulus in conditions of horizontally and vertically inhomogeneous heating. Izv. Atmos. Ocean. Phys. 20, 767770.
Boubnov, B. M. & Golitsyn, G. S. 1986 Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167, 503531.
Boubnov, B. M. & Golitsyn, G. S. 1990 Temperature and velocity field regimes of convective motions in a rotating plane fluid layer. J. Fluid Mech. 219, 215239.
Bryan, F. 1987 Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr. 17, 970985.
Calkins, M. A., Julien, K., Tobias, S. M. & Aurnou, J. M. 2015 A multiscale dynamo model driven by quasi-geostrophic convection. J. Fluid Mech. 780, 143166.
Chandrasekhar, S. 1953 The instability of a layer of fluid heated below and subject to coriolis forces. Proc. R. Soc. Lond. 217, 306327.
Colin de Verdière, A. 1988 Buoyancy driven planetary flows. J. Mar. Res. 42, 215265.
Deardorff, J. W. 1985 Mixed-layer entrainment: a review. In 7th Symposium on Turbulence and Diffusion (ed. Weil, J. C.), pp. 3942. American Meteorological Society.
Gayen, B., Griffiths, R. W. & Hughes, G. O. 2014 Stability transitions and turbulence in horizontal convection. J. Fluid Mech. 751, 698724.
Gayen, B., Griffiths, R. W., Hughes, G. O. & Saenz, J. A. 2013a Energetics of horizontal convection. J. Fluid Mech. 716, R10.
Gayen, B., Hughes, G. O. & Griffiths, R. W. 2013b Completing the mechanical energy pathways in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 111 (12), 124301.
Griffiths, R. W., Hughes, G. O. & Gayen, B. 2013 Horizontal convection dynamics: insights from transient adjustment. J. Fluid Mech. 726, 559595.
Hignett, P., Ibbetson, A. & Killworth, P. D. 1981 On rotating thermal convection driven by non-uniform heating from below. J. Fluid Mech. 109, 161187.
Hughes, G. O., Gayen, B. & Griffiths, R. W. 2013 Available potential energy in Rayleigh–Bénard convection. J. Fluid Mech. 729, R3.
Hughes, G. O. & Griffiths, R. W. 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40, 185208.
Hughes, G. O., Griffiths, R. W., Mullarney, J. C. & Peterson, W. H. 2007 A theoretical model for horizontal convection at high Rayleigh number. J. Fluid Mech. 581, 251276.
Jones, H. & Marshall, J. 1993 Convection with rotation in a neutral ocean: a study of open-ocean deep convection. J. Phys. Oceanogr. 23, 10091039.
Julien, K., Aurnou, J. M., Calkins, M. A., Knobloch, E., Marti, P., Stellmach, S. & Vasil, G. M. 2016 A nonlinear model for rotationally constrained convection with Ekman pumping. J. Fluid Mech. 798, 5087.
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012 Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (4–5), 392428.
King, E. M., Stellmach, S. & Aurnou, J. M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691, 568582.
King, E. M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. M. 2009 Boundary layer control of rotating convection systems. Nature 457, 301304.
Klinger, B. A. & Marshall, J. 1995 Regimes and scaling laws for rotating deep convection in the ocean. Dyn. Atmos. Oceans 21, 227256.
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 164.
Maxworthy, T. & Narimousa, S. 1994 Unsteady, turbulent convection into a homogeneous, rotating fluid, with oceanographic applications. J. Phys. Oceanogr. 24, 865887.
Mullarney, J. C., Griffiths, R. W. & Hughes, G. O. 2004 Convection driven by differential heating at a horizontal boundary. J. Fluid Mech. 516, 181209.
Nokes, R.2014 Streams, version 2.01: system theory and design. Tech. Rep. Department of Civil and Natural Resources Engineering, University of Canterbury, New Zealand.
Paparella, F. & Young, W. R. 2002 Horizontal convection is non-turbulent. J. Fluid Mech. 466, 205214.
Park, Y.-G. & Bryan, K. 2000 Comparison of thermally driven circulations from a depth-coordinate model and an isopycnal-layer model. Part I: scaling-law sensitivity to vertical diffusivity. J. Phys. Oceanogr. 30, 590605.
Park, Y.-G. & Whitehead, J. A. 1999 Rotating convection driven by differential bottom heating. J. Phys. Oceanogr. 29, 12081220.
Plumley, M., Julien, K., Marti, P. & Stellmach, S. 2016 The effects of Ekman pumping on quasi-geostrophic Rayleigh–Bénard convection. J. Fluid Mech. 803, 5171.
Quon, C. 1987 Nonlinear response of a rotating fluid to differential heating from below. J. Fluid Mech. 181, 233263.
Read, P. L. 1986 Regimes of axisymmetric flow in an internally heated rotating fluid. J. Fluid Mech. 168, 255289.
Read, P. L. 2003 A combined laboratory and numerical study of heat transport by baroclinic eddies and axisymmetric flows. J. Fluid Mech. 489, 301323.
Robinson, A. R. 1960 The general thermal circulation in equatorial regions. Deep-Sea Res. 6, 311317.
Robinson, A. & Stommel, H. 1959 The oceanic thermocline and the associated thermohaline circulation. Tellus 11, 295308.
Rossby, H. T. 1965 On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res. 12, 916.
Rossby, T. 1998 Numerical experiments with a fluid heated non-uniformly from below. Tellus A 50, 242257.
Ruddick, B. R. & Shirtcliffe, T. G. L. 1979 Data for double diffusers: physical properties of aqueous salt-sugar solutions. Deep-Sea Res. 26A, 775787.
Saenz, J. A., Hogg, A. M., Hughes, G. O. & Griffiths, R. W. 2012 Mechanical power input from buoyancy and wind to the circulation in an ocean model. Geophys. Res. Lett. 39, L13605.
Send, U. & Marshall, J. 1995 Integral effects of deep convection. J. Phys. Oceanogr. 25, 855872.
Sheard, G. J., Hussam, W. K. & Tsai, T. 2016 Linear stability and energetics of rotating radial horizontal convection. J. Fluid Mech. 795, 135.
Stern, M. E. 1975 Ocean Circulation Physics. Academic.
Stewart, K. D., Hughes, G. O. & Griffiths, R. W. 2011 When do marginal seas and topographic sills modify the ocean density structure? J. Geophys. Res. 116, C08021.
Vreugdenhil, C. A., Gayen, B. & Griffiths, R. W. 2016 Mixing and dissipation in a geostrophic buoyancy-driven circulation. J. Geophys. Res. Oceans 121, 60766091.
Wang, W. & Huang, R. X. 2005 An experimental study on thermal circulation driven by horizontal differential heating. J. Fluid Mech. 540, 4973.
Winton, M. 1996 The role of horizontal boundaries in parameter sensitivity and decadal–scale variability of coarse-resolution ocean general circulation models. J. Phys. Oceanogr. 26, 289304.
Zhang, Y., Chen, C., Zhang, Z. & Wang, W. 2016 Rotating horizontal convection and the potential vorticity constraint. J. Fluid Mech. 803, 7293.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO
Type Description Title
VIDEO
Movies

Vreugdenhil et al. supplementary movie
Side view movie from Experiment 4 with dye tracer and showing only the heated half of the box (RaF = 6.5 z 1014, f = 0.4s-1, Ro = 5.6 z 10-3).

 Video (22.4 MB)
22.4 MB
VIDEO
Movies

Vreugdenhil et al. supplementary movie
Side view movie from Experiment 6 with dye tracer and showing only the heated half of the box (RaF = 6.8 z 1014, f = 1.6s-1, Ro = 7.1 z 10-4).

 Video (29.7 MB)
29.7 MB

Geostrophic and chimney regimes in rotating horizontal convection with imposed heat flux

  • Catherine A. Vreugdenhil (a1), Ross W. Griffiths (a1) and Bishakhdatta Gayen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.