Skip to main content Accessibility help

Formation and break-up of rigid agglomerates in turbulent channel and pipe flows

  • K. C. J. Schutte (a1), L. M. Portela (a1), A. Twerda (a2) (a3) and R. A. W. M. Henkes (a2)


We have developed and applied an Eulerian–Lagrangian model for the transport, formation, break-up, deposition and re-entrainment of particle agglomerates. In this paper, we focus on agglomeration and break-up. Simulations were carried out to investigate what changes in the turbulent flow are inflicted by the presence of the agglomerates. Also, the dependence of the properties of the agglomerates on the Reynolds number of the flow and on the strength of the bonds between the primary particles is studied. The presence of the agglomerates attenuates the turbulence and thereby lowers the Reynolds stresses. As a result, the flow rate increases at constant pressure drop when agglomerates are formed (up to a certain dimension). If the agglomerates surpass this dimension, long-distance viscosity effects become dominant and a flow rate decrease occurs. The characteristics of the agglomerates are largely insensitive to the Reynolds number, provided the flow is turbulent. The agglomerates have an open and porous structure, and a fractal dimension of 1.8–2.3. Their mean mass scales exponentially with the strength of the internal bonds. Contrary to assumptions that are typically made in engineering models in the literature, agglomerates do not preferentially break into two fragments of similar size.


Corresponding author

Email address for correspondence:


Hide All
Babler, M. U. 2008 A collision efficiency model for flow-induced coagulation of fractal aggregates. AIChE J. 54, 17481760.
Babler, M. U., Biferale, L., Brandt, L., Feudel, U., Guseva, K., Lanotte, A. S., Marchioli, C., Picano, F., Sardina, G., Soldati, A. & Toschi, F. 2015 Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows. J. Fluid Mech. 766, 104128.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Boersma, B. J.1997 Electromagnetic effects in cylindrical pipe flow. PhD thesis, Delft University of Technology.
de Bona, J., Lanotte, A. S. & Vanni, M. 2014 Internal stresses and breakup of rigid isostatic aggregates in homogeneous and isotropic turbulence. J. Fluid Mech. 755, 365396.
Brunk, B. K., Koch, D. L. & Lion, L. W. 1998 Turbulent coagulation of colloidal particles. J. Fluid Mech. 364, 81113.
Chen, D. & Doi, M. 1999 Microstructure and viscosity of aggregating colloids under strong shearing force. J. Colloid Interface Sci. 212, 286292.
Chen, M., Kontomaris, K. & McLaughlin, J. B. 1999 Direct numerical simulation of droplet collisions in a turbulent channel flow. Part I: collision algorithm. Int J. Multiphase Flow 24, 10791103.
Crowe, C. T., Sommerfeld, M. & Tsuji, Y. 1997 Multiphase Flows with Droplets and Particles. CRC Press.
Derksen, J. J. 2008 Flow-induced forces in sphere doublets. J. Fluid Mech. 608, 337356.
Derksen, J. J. 2012 Direct numerical simulations of aggregation of monosized spherical particles in homogeneous isotropic turbulence. AIChE J. 58, 25892600.
Dizaji, F. F. & Marshall, J. S. 2016 An accelerated stochastic vortex structure method for particle collision and agglomeration in homogeneous turbulence. Phys. Fluids 28, 113301.
Eggels, J. G. M.1994 Direct and large eddy simulation of turbulent flow in a cylindrical pipe geometry. PhD thesis, Delft University of Technology.
Ernst, M., Dietzel, M. & Sommerfeld, M. 2013 A lattice Boltzmann method for simulating transport and agglomeration of resolved particles. Acta Mech. 224, 24252449.
Flesch, J. C., Spicer, P. T. & Pratsinis, S. E. 1999 Laminar and turbulent shear-induced flocculation of fractal aggregates. AIChE J. 45, 11141124.
Gastaldi, A. & Vanni, M. 2011 The distribution of stresses in rigid fractal-like aggregates in a uniform flow field. J. Colloid Interface Sci. 357, 1830.
van Haarlem, B. A.2000 The dynamics of particles and droplets in atmospheric turbulence: A numerical study. PhD thesis, Delft University of Technology.
Johnson, K. L., Kendall, K. & Roberts, A. D. 1971 Surface energy and the contact of elastic solids. Proc. R. Soc. A 324, 301313.
El Khoury, G. K., Schlatter, P., Noorani, A., Fischer, P. F., Brethouwer, G. & Johansson, A. V. 2013 Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust. 91, 475495.
Lazzari, S., Nicoud, L., Jaquet, B., Lattuada, M. & Morbidelli, M. 2016 Fractal-like structures in colloid science. Adv. Colloid Interface Sci. 235, 113.
Li, Y., McLaughlin, J. B., Kontomatis, K. & Portela, L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13, 29572967.
Mäkinen, J. T. T. 2005 Particle accretion and dissipation simulator: collisional aggregation of icy particles. Icarus 177, 269279.
Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F. & Portela, L. M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Int J. Multiphase Flow 34, 879893.
Meakin, P. & Jullien, R. 1988 The effects of restructuring on the geometry of clusters formed by diffusion-limited, ballistic, and reaction-limited cluster–cluster aggregation. J. Chem. Phys. 89, 246250.
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct Numerical Simulation of turbulent channel flow up to Re 𝜏 = 590. Phys. Fluids 11, 943945.
Paschkewitz, J. S., Dubief, Y., Dimitropoulos, C. D., Shaqfeh, E. S. G. & Moin, P. 2004 Numerical simulation of turbulent drag reduction using rigid fibres. J. Fluid Mech. 518, 281317.
Portela, L. M., Cota, P. & Oliemans, R. V. A. 2002 Numerical study of the near-wall behaviour of particles in turbulent pipe flows. Powder Technol. 125, 149157.
Portela, L. M. & Oliemans, R. V. A. 2003 Eulerian–Lagrangian DNS/LES of particle–turbulence interactions in wall-bounded flows. Int J. Numer. Methods Fluids 43, 10451065.
Pourquié, M. J. B. M.1994 Large-eddy simulation of a turbulent jet. PhD thesis, Delft University of Technology.
Ptasinski, P. K., Nieuwstadt, F. T. M., van den Brule, B. H. A. A. & Hulsen, M. A. 2001 Experiments in turbulent pipe flow with polymer additives at maximum drag reduction. Flow Turbul. Combust. 66, 159182.
Reade, W. C. & Collins, L. R. 2000 A numerical study of the particle size distribution of an aerosol undergoing turbulent coagulation. J. Fluid Mech. 415, 4564.
Richardson, D. C. 1995 A self-consistent numerical treatment of fractal aggregate dynamics. Icarus 115, 320335.
Schutte, K. C. J.2016 A hydrodynamic perspective on the formation of asphaltene deposits. PhD thesis, Delft University of Technology.
Sureshkumar, R., Beris, A. N. & Handler, R. A. 1998 Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9, 743755.
Zinchenko, A. Z. & Davis, R. H. 2014 Growth of multiparticle aggregates in sedimenting suspensions. J. Fluid Mech. 742, 577617.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Schutte et al. supplementary material
Schutte et al. supplementary material 1

 Unknown (228 KB)
228 KB

Formation and break-up of rigid agglomerates in turbulent channel and pipe flows

  • K. C. J. Schutte (a1), L. M. Portela (a1), A. Twerda (a2) (a3) and R. A. W. M. Henkes (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.