Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-22T03:47:28.572Z Has data issue: false hasContentIssue false

The force on a slender particle under oscillatory translational motion in unsteady Stokes flow

Published online by Cambridge University Press:  17 December 2019

Jason K. Kabarowski
Affiliation:
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Aditya S. Khair*
Affiliation:
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
*
Email address for correspondence: akhair@andrew.cmu.edu

Abstract

Asymptotic approximations are derived for the hydrodynamic force on a rigid, axisymmetric slender particle executing longitudinal or transverse oscillation in unsteady Stokes flow. The slender particle has an aspect ratio $\unicode[STIX]{x1D716}=a/\ell \ll 1$, where $\ell$ is the half-length of the particle, and $a$ is its characteristic cross-sectional width. It is assumed that the particle has zero thickness at its ends. The frequency of oscillation is parameterized by the complex quantity $\unicode[STIX]{x1D706}^{2}=-\text{i}\ell ^{2}\unicode[STIX]{x1D714}/\unicode[STIX]{x1D708}$, where $\unicode[STIX]{x1D708}$ is the kinematic viscosity, $\unicode[STIX]{x1D714}$ is the particle angular oscillation frequency (units of radians per second) and $\text{i}=\sqrt{-1}$. Asymptotic approximations for the force are obtained in three distinguished limits for longitudinal oscillations: (i) a ‘low-frequency’ regime with $\unicode[STIX]{x1D716}\rightarrow 0$ and $|\unicode[STIX]{x1D706}|$ fixed; (ii) a ‘moderate-frequency’ regime with $\unicode[STIX]{x1D716}\rightarrow 0$ and $\unicode[STIX]{x1D716}|\unicode[STIX]{x1D706}|=O(1)$; and (iii) a ‘high-frequency’ regime with $\unicode[STIX]{x1D716}\rightarrow 0$ and $\unicode[STIX]{x1D716}|\unicode[STIX]{x1D706}|=O(1/\unicode[STIX]{x1D716}^{2})$. The acceleration reaction is a leading-order contributor to the force in this last regime, whereas it is subdominant at moderate frequency. For transverse oscillation we construct asymptotic approximations in the low and moderate-frequency regimes. Here, the acceleration reaction here plays a leading-order role at moderate frequency; hence, a ‘high frequency’ regime in this case simply corresponds to the limiting behaviour for $\unicode[STIX]{x1D716}|\unicode[STIX]{x1D706}|\gg 1$. Our asymptotic predictions are in good agreement with the numerically computed frequency-dependent force on a prolate spheroid ($\unicode[STIX]{x1D716}=0.1$) for longitudinal and transverse oscillations by Lawrence and Weinbaum (J. Fluid Mech., vol. 189, 1988, pp. 463–489) and Pozrikidis (Phys. Fluids, vol. 1, 1989a, pp. 1508–1520), respectively.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alder, B. J. & Wainwright, T. E. 1967 Velocity autocorrelations for hard spheres. Phys. Rev. Lett. 18, 988990.CrossRefGoogle Scholar
Basset, A. B. 1888 A Treatise on Hydrodynamics, vol. 2. Bell and Co.Google Scholar
Batchelor, G. K. 1954 The skin friction of infinite cylinders moving parallel to their length. Q. J. Mech. Appl. Maths 7, 179192.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 419440.CrossRefGoogle Scholar
Daitche, A. & Tél, T. 2011 Memory effects are relevant for chaotic advection of inertial particles. Phys. Rev. Lett. 107, 244501.CrossRefGoogle ScholarPubMed
Dehghani, N. L. & Narsimhan, V. 2019 The unsteady drag of a translating spherical drop with a viscoelastic membrane at small Reynolds number. J. Non-Newtonian Fluid Mech. 269, 8287.CrossRefGoogle Scholar
Feng, J. & Joseph, D. D. 1995 The unsteady motion of solid bodies in creeping flows. J. Fluid Mech. 303, 83102.CrossRefGoogle Scholar
Geer, J. 1975 Uniform asymptotic solutions for potential flow about a slender body of revolution. J. Fluid Mech. 67, 817827.CrossRefGoogle Scholar
Hamel, A., Fisch, C., Combettes, L., Dupuis-Williams, P. & Baroud, C. N. 2011 Transitions between three swimming gaits in Paramecium escape. Proc. Natl Acad. Sci. 108, 72907295.CrossRefGoogle ScholarPubMed
Handelsman, R. A. & Keller, J. B. 1967 Axially symmetric potential flow around a slender body. J. Fluid Mech. 28, 131147.CrossRefGoogle Scholar
Hinch, E. J. 1975 Application of the Langevin equation to fluid suspensions. J. Fluid Mech. 72, 499511.CrossRefGoogle Scholar
Holtzmark, J., Johnsen, I., Sikkeland, T. & Skavlem, S. 1954 Boundary layer flow near a cylindrical obstacle in oscillating incompressible fluid. J. Acoust. Soc. Am. 26, 2639.CrossRefGoogle Scholar
Kang, I. S. & Leal, L. G. 1988 The drag coefficient for a spherical bubble in a uniform streaming flow. Phys. Fluids 31, 233237.CrossRefGoogle Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics Principles and Selected Applications. Dover Publications Inc.Google Scholar
Lawrence, C. J. & Weinbaum, S. 1986 The force on an axisymmetric body in linearized time-dependent motion: a new memory term. J. Fluid Mech. 171, 209218.CrossRefGoogle Scholar
Lawrence, C. J. & Weinbaum, S. 1988 The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid. J. Fluid Mech. 189, 463489.CrossRefGoogle Scholar
Loewenberg, M. 1993 Stokes resistance, added mass, and basset force for arbitrarily oriented, finite length cylinders. Phys. Fluids 5, 765767.CrossRefGoogle Scholar
Loewenberg, M. 1994 Unsteady electrophoretic motion of a non-spherical colloidal particle in an oscillating electric field. J. Fluid Mech. 278, 149174.CrossRefGoogle Scholar
Mathijssen, A. J. T. M., Culver, J., Bhamla, M. S. & Prakash, M. 2019 Collective intercellular communication through ultra-fast hydrodynamic trigger waves. Nature 571, 560564.CrossRefGoogle ScholarPubMed
Olivieri, S., Picano, F., Sardina, G., Ludicone, D. & Brandt, L. 2014 The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence. Phys. Fluids 26, 041704.CrossRefGoogle Scholar
Pozrikidis, C. 1989a A singularity method for unsteady linearized flow. Phys. Fluids 1, 15081520.CrossRefGoogle Scholar
Pozrikidis, C. 1989b A study of linearized oscillatory flow past particles by the boundary-integral method. J. Fluid Mech. 202, 1741.CrossRefGoogle Scholar
Premlata, A. R. & Wei, H.-H. 2019 The Basset problem with dynamic slip: slip-induced memory effect and slip-stick transition. J. Fluid Mech. 866, 431499.CrossRefGoogle Scholar
Rayleigh, Lord 1911 On the motion of solid bodies through viscous liquid. Lond. Edin. Dublin Philos. Mag. J. Sci. 21 (126), 697711.CrossRefGoogle Scholar
Schnitzer, O. 2015 Slender-body approximations for advection-diffusion problems. J. Fluid Mech. 768, R5.CrossRefGoogle Scholar
Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.Google Scholar
Weitz, D. A., Pine, D. J., Pusey, P. N. & Tough, R. J. A. 1989 Nondiffusive Brownian motion studied by diffusing-wave spectroscopy. Phys. Rev. Lett. 63, 17471750.CrossRefGoogle ScholarPubMed
Yang, S.-M. & Leal, L. G. 1991 A note on memory-integral contribution to the force on an accelerating spherical drop at low Reynolds number. Phys. Fluids 3, 18221824.CrossRefGoogle Scholar
Zhang, W. & Stone, H. A. 1998 Oscillatory motions of circular disks and nearly spherical particles in viscous flows. J. Fluid Mech. 367, 329358.CrossRefGoogle Scholar