Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T03:56:09.425Z Has data issue: false hasContentIssue false

Flow structure around a low-drag Ahmed body

Published online by Cambridge University Press:  26 February 2021

K. Liu
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology, Shenzhen518055, PR China
B.F. Zhang*
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology, Shenzhen518055, PR China
Y.C. Zhang
Affiliation:
State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun130122, PR China
Y. Zhou*
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology, Shenzhen518055, PR China
*
 Email addresses for correspondence: zhangbfu@hit.edu.cn, yuzhou@hit.edu.cn
 Email addresses for correspondence: zhangbfu@hit.edu.cn, yuzhou@hit.edu.cn

Abstract

The wake of an Ahmed body may be divided into high- and low-drag regimes where the rear slant angle (φ) is in the ranges of 12.5°–30° and larger than 30°, respectively. This work aims to gain a relatively thorough understanding of unsteady predominant coherent structures around an Ahmed body of φ = 35° in the low-drag regime. Extensive hot-wire, wall pressure, flow visualization and particle image velocimetry measurements have been conducted at Reynolds number $Re \in [0.3,2.7] \times {10^5}$, based on the square root of the model's frontal area. A total of five distinct Strouhal numbers have been identified in the wake. One of them, Stw ≈ 0.30, is captured behind the vertical base, which is associated with the structures that emanate from the upper recirculation bubble and pinch off from the lower bubble, respectively. It is found that Stw scales with a characteristic length αS, which reflects physically the bubble size, and the Strouhal number $St_w^ + $ based on αS is a constant 0.20, irrespective of the value of φ. A corner vortex rolling upstream is observed near the lower end of the slanted surface, whose formation mechanism and dynamical role are discussed. The Reynolds-number effect on the flow is also documented. Based on the present and previously reported data, a conceptual flow structure model is proposed for a low-drag Ahmed body, including both steady and unsteady coherent structures around the body.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S.R., Ramm, G. & Faltin, G. 1984 Some salient features of the time-averaged ground vehicle wake. SAE Technical Paper 840300, pp. 1–30. Society of Automotive Engineers, Inc., Warrendale, PA.CrossRefGoogle Scholar
Antonia, R.A., Zhou, Y. & Matsumura, M. 1993 Spectral characteristics of momentum and heat-transfer in the turbulent wake of a circular-cylinder. Exp. Therm. Fluid Sci. 6, 371375.CrossRefGoogle Scholar
Balachandar, S., Mittal, R. & Najjar, F.M. 1997 Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies. J. Fluid Mech. 351, 167199.CrossRefGoogle Scholar
Barros, D., Borée, J., Cadot, O., Spohn, A. & Noack, B.R. 2017 Forcing symmetry exchanges and flow reversals in turbulent wakes. J. Fluid Mech. 829, R1.CrossRefGoogle Scholar
Barros, D., Borée, J., Noack, B.R. & Spohn, A. 2016 a Resonances in the forced turbulent wake past a 3D blunt body. Phys. Fluids 28, 065104.CrossRefGoogle Scholar
Barros, D., Borée, J., Noack, B.R., Spohn, A. & Ruiz, T. 2016 b Bluff body drag manipulation using pulsed jets and Coanda effect. J. Fluid Mech. 805, 422459.CrossRefGoogle Scholar
Ben Chiekh, M., Michard, M., Grosjean, N. & Bera, J. 2004 Reconstruction temporelle d'un champ aérodynamique instationnaire à partir de mesures PIV non résolues dans le temps. In Proceedings of 9ème Congrès Francophone de Vélocimétrie Laser, Brussels, Belgium, September 2004, paper D.8.Google Scholar
Bruneau, C.-H., Creusé, E., Depeyras, D., Gilliéron, P. & Mortazavi, I. 2011 Active procedures to control the flow past the Ahmed body with a 25° rear window. Intl J. Aerodyn. 1, 299317.CrossRefGoogle Scholar
Brunn, A. & Nitsche, W. 2006 Active control of turbulent separated flows over slanted surfaces. Intl J. Heat Fluid Flow 27, 748755.CrossRefGoogle Scholar
Choi, H., Lee, J. & Park, H. 2014 Aerodynamics of heavy vehicles. Annu. Rev. Fluid Mech. 46, 441468.CrossRefGoogle Scholar
Chong, M.S., Perry, A.E. & Cantwell, B.J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A: Fluid Dyn. 2, 765777.CrossRefGoogle Scholar
Conan, B., Anthoine, J. & Planquart, P. 2011 Experimental aerodynamic study of a car-type bluff body. Exp. Fluids 50, 12731284.CrossRefGoogle Scholar
Fares, E. 2006 Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach. Comput. Fluids 35, 940950.CrossRefGoogle Scholar
Franck, G., Nigro, N., Storti, M. & D'elia, J. 2009 Numerical simulation of the flow around the Ahmed vehicle model. Latin Am. Appl. Res. 39, 295306.Google Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2013 Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J. Fluid Mech. 722, 5184.CrossRefGoogle Scholar
Guilmineau, E. 2008 Computational study of flow around a simplified car body. J. Wind Engng Ind. Aerodyn. 96, 12071217.CrossRefGoogle Scholar
Guilmineau, E., Deng, G.B., Leroyer, A., Queutey, P., Visonneau, M. & Wackers, J. 2017 Assessment of hybrid RANS-LES formulations for flow simulation around the Ahmed body. Comput. Fluids 176, 302319.CrossRefGoogle Scholar
Hucho, W.H. & Sovran, G. 1993 Aerodynamics of road vehicles. Annu. Rev. Fluid Mech. 25, 485537.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Reynolds, W.C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.CrossRefGoogle Scholar
Joseph, P., Amandolese, X. & Aider, J.L. 2012 Drag reduction on the 25 degrees slant angle Ahmed reference body using pulsed jets. Exp. Fluids 52, 11691185.CrossRefGoogle Scholar
Kohri, I., Yamanashi, T., Nasu, T., Hashizume, Y. & Katoh, D. 2014 Study on the transient behaviour of the vortex structure behind Ahmed body. SAE Intl J. Passeng. Cars - Mech. Syst. 7, 586602.CrossRefGoogle Scholar
Krajnović, S. & Davidson, L. 2005 a Flow around, a simplified car, part 1: large eddy simulation. Trans. ASME J. Fluids Engng 127, 907918.CrossRefGoogle Scholar
Krajnović, S. & Davidson, L. 2005 b Flow around a simplified car, part 2: understanding the flow. Trans. ASME J. Fluids Engng 127, 919928.CrossRefGoogle Scholar
Lahaye, A., Leroy, A. & Kourta, A. 2014 Aerodynamic characterisation of a square back bluff body flow. Intl J. Aerodyn. 4, 4360.CrossRefGoogle Scholar
Lehugeur, B., Gilliéron, P. & Ta-Phuoc, L. 2005 Characterization of longitudinal vortices in the wake of a simplified car model. In 23rd AIAA Applied Aerodynamics Conference, AIAA Paper 2015-5383.Google Scholar
Lienhart, H. & Becker, S. 2003 Flow and turbulence structure in the wake of a simplified car model. SAE Technical Paper 2003-01-0656, Society of Automotive Engineers, Inc, Warrendale, PA.CrossRefGoogle Scholar
Lienhart, H., Stoots, C. & Becker, S. 2002 Flow and turbulence structures in the wake of a simplified car model (Ahmed model). In New Results in Numerical and Experimental Fluid Mechanics III, pp. 323–330. Springer.CrossRefGoogle Scholar
Meile, W., Ladinek, T., Brenn, G., Reppenhagen, A. & Fuchs, A. 2016 Non-symmetric bi-stable flow around the Ahmed body. Intl J. Heat Fluid Flow 57, 3447.CrossRefGoogle Scholar
Minguez, M., Pasquetti, R. & Serre, E. 2008 High-order large-eddy simulation of flow over the “Ahmed body” car model. Phys. Fluids 20, 095101.CrossRefGoogle Scholar
Östh, J., Noack, B.R., Krajnović, S., Barros, D. & Borée, J. 2014 On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body. J. Fluid Mech. 747, 518544.CrossRefGoogle Scholar
van Oudheusden, B.W., Scarano, F., Van Hinsberg, N.P. & Watt, D.W. 2005 Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39, 8698.CrossRefGoogle Scholar
Rao, A., Minelli, G., Basara, B. & Krajnović, S. 2018 On the two flow states in the wake of a hatchback Ahmed body. J. Wind Engng Ind. Aerodyn. 173, 262278.CrossRefGoogle Scholar
Rouméas, M., Gilliéron, P. & Kourta, A. 2009 Drag reduction by flow separation control on a car after body. Intl J. Numer. Meth. Fluids 60, 12221240.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory, 8th edn, p. 22. Springer.CrossRefGoogle Scholar
Sciacchitano, A., Wieneke, B. & Scarano, F. 2013 PIV uncertainty quantification by image matching. Meas. Sci. Technol. 24, 045302.CrossRefGoogle Scholar
Sellappan, P., Mcnally, J. & Alvi, F.S. 2018 Time-averaged three-dimensional flow topology in the wake of a simplified car model using volumetric PIV. Exp. Fluids 59, 124.CrossRefGoogle Scholar
Sims-Williams, D. 2001 Self-excited aerodynamic unsteadiness associated with passenger cars. Doctoral dissertation, Durham University.Google Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45, 561571.CrossRefGoogle Scholar
Spohn, A. & Gilliéron, P. 2002 Flow separations generated by a simplified geometry of an automotive vehicle. In IUTAM Symposium on Unsteady Separated Flows. Kluwer Academic.Google Scholar
Strachan, R.K., Knowles, K. & Lawson, N.J. 2007 The vortex structure behind an Ahmed reference model in the presence of a moving ground plane. Exp. Fluids 42, 659669.CrossRefGoogle Scholar
Thacker, A., Aubrun, S., Leroy, A. & Devinant, P. 2012 Effects of suppressing the 3D separation on the rear slant on the flow structures around an Ahmed body. J. Wind Engng Ind. Aerodyn. 107, 237243.CrossRefGoogle Scholar
Thacker, A., Aubrun, S., Leroy, A. & Devinant, P. 2013 Experimental characterization of flow unsteadiness in the centerline plane of an Ahmed body rear slant. Exp. Fluids 54, 1479.CrossRefGoogle Scholar
Tounsi, N., Mestiri, R., Keirsbulck, L., Oualli, H., Hanchi, S. & Aloui, F. 2016 Experimental study of flow control on bluff body using piezoelectric actuators. J. Appl. Fluid Mech. 9, 827838.Google Scholar
Tunay, T., Sahin, B. & Ozbolat, V. 2014 Effects of rear slant angles on the flow characteristics of Ahmed body. Exp. Therm. Fluid Sci. 57, 165176.CrossRefGoogle Scholar
Tunay, T., Yaniktepe, B. & Sahin, B. 2016 Computational and experimental investigations of the vortical flow structures in the near wake region downstream of the Ahmed vehicle model. J. Wind Engng Ind. Aerodyn. 159, 4864.CrossRefGoogle Scholar
Venning, J., Lo Jacono, D., Burton, D., Thompson, M.C. & Sheridan, J. 2017 The nature of the vortical structures in the near wake of the Ahmed body. Proc. Inst. Mech. Engrs D: J. Automob. Engng 231, 12391244.CrossRefGoogle Scholar
Vino, G., Watkins, S., Mousley, P., Watmuff, J. & Prasad, S. 2005 Flow structures in the near-wake of the Ahmed model. J. Fluids Struct. 20, 673695.CrossRefGoogle Scholar
Volpe, R., Devinant, P. & Kourta, A. 2015 Experimental characterization of the unsteady natural wake of the full-scale square back Ahmed body: flow bi-stability and spectral analysis. Exp. Fluids 56, 99.CrossRefGoogle Scholar
Wang, X.W., Zhou, Y., Pin, Y.F. & Chan, T.L. 2013 Turbulent near wake of an Ahmed vehicle model. Exp. Fluids 54, 1490.CrossRefGoogle Scholar
Wen, X., Tang, H. & Duan, F. 2015 Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer. Phys. Fluids 27, 083601.CrossRefGoogle Scholar
Zhang, B.F., Liu, K., Zhou, Y., To, S. & Tu, J.Y. 2018 Active drag reduction of a high-drag Ahmed body based on steady blowing. J. Fluid Mech. 856, 351396.CrossRefGoogle Scholar
Zhang, B.F., Zhou, Y. & To, S. 2015 Unsteady flow structures around a high-drag Ahmed body. J. Fluid Mech. 777, 291326.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar
Zhou, Y., Du, C., Mi, J. & Wang, X.W. 2012 Turbulent round jet control using two steady minijets. AIAA J. 50, 736740.CrossRefGoogle Scholar