Skip to main content Accessibility help
×
Home

Flow around an oscillating circular disk at low to moderate Reynolds numbers

  • Xinliang Tian (a1) (a2), Longfei Xiao (a1) (a2), Xiangdong Zhang (a1) (a2), Jianmin Yang (a1) (a2), Longbin Tao (a3) and Dan Yang (a4)...

Abstract

Direct numerical simulations of the flow induced by a circular disk oscillating sinusoidally along its axis are performed. The aspect ratio ( $\unicode[STIX]{x1D712}=\text{diameter}/\text{thickness}$ ) of the disk is 10. The Reynolds number ( $\mathit{Re}$ ), based on the maximum speed and the diameter of the disk, is in the range of $50\leqslant \mathit{Re}\leqslant 800$ . The Keulegan–Carpenter number ( $KC$ ) is in the range of $1\leqslant KC\leqslant 24$ . Five flow regimes are observed in the considered $\mathit{Re}$ $KC$ space: (I) axisymmetric flow (AS), (II) planar symmetric flow in the low- $KC$ region (PSL), (III) azimuthally rotating flow in the low- $KC$ region (ARL), (IV) planar symmetric flow in the high- $KC$ region (PSH) and (V) azimuthally rotating flow in the high- $KC$ region (ARH). The critical boundaries between different flow regimes are identified based on the evolutions of the magnitude and direction of transverse force acting on the disk. For the non-axisymmetric flow regimes, the flow is one-sided with respect to the axis of the disk and is associated with a non-zero mean value of the transverse force acting on the disk.

Copyright

Corresponding author

Email address for correspondence: jmyang@sjtu.edu.cn

References

Hide All
An, H., Cheng, L. & Zhao, M. 2011 Direct numerical simulation of oscillatory flow around a circular cylinder at low Keulegan–Carpenter number. J. Fluid Mech. 666, 77103.
Auguste, F., Fabre, D. & Magnaudet, J. 2010 Bifurcations in the wake of a thick circular disk. Theor. Comput. Fluid Dyn. 24 (1), 305313.
Auguste, F., Magnaudet, J. & Fabre, D. 2013 Falling styles of disks. J. Fluid Mech. 719, 388405.
Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16 (1), 195222.
Berger, E., Scholz, D. & Schumm, M. 1990 Coherent vortex structures in the wake of a sphere and a circular disk at rest and under forced vibrations. J. Fluids Struct. 4 (3), 231257.
Bohorquez, P., Sanmiguel-rojas, E., Sevilia, A., Jiménez-gonzález, J. I. & Martínez-bazán, C. 2011 Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body. J. Fluid Mech. 676, 110144.
Chrust, M., Bouchet, G. & Dušek, J. 2010 Parametric study of the transition in the wake of oblate spheroids and flat cylinders. J. Fluid Mech. 665, 199208.
Chrust, M., Bouchet, G. & Dušek, J. 2014 Effect of solid body degrees of freedom on the path instabilities of freely falling or rising flat cylinders. J. Fluids Struct. 47, 5570.
Chrust, M., Dauteuille, C., Bobinski, T., Rokicki, J., Goujon-Durand, S., Wesfreid, J. E., Bouchet, G. & Dušek, J. 2015 Effect of inclination on the transition scenario in the wake of fixed disks and flat cylinders. J. Fluid Mech. 770, 189209.
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44, 97121.
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20, 051702.
Fernandes, P. C., Risso, F., Ern, P. & Magnaudet, J. 2007 Oscillatory motion and wake instability of freely rising axisymmetric bodies. J. Fluid Mech. 573, 479502.
Ghidersa, B. & Dus̆ek, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 3369.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research Report CTR-S88, pp. 193208. NASA.
Kuo, Y. H. & Baldwin, L. V. 1967 The formation of elliptical wakes. J. Fluid Mech. 27 (02), 353360.
Marshall, D. & Stanton, T. E. 1931 On the eddy system in the wake of flat circular plates in three dimensional flow. Proc. R. Soc. Lond. A 130 (813), 295301.
Meliga, P., Chomaz, J. M. & Sipp, D. 2009 Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159189.
Michael, P. 1966 Steady motion of a disk in a viscous fluid. Phys. Fluids 9, 466471.
Morison, J. R., O’Brien, M. P., Johnson, J. W. & Schaaf, S. A. 1950 The force exerted by surface waves on piles. Petrol. Trans. AIME 189, 149157.
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.
OpenFOAM 2009 The Open Source CFD Toolbox, Programmer’s Guide, Version 1.6. OpenCFD Limited.
Rimon, Y. 1969 Numerical solution of the incompressible time-dependent viscous flow past a thin oblate spheroid. Phys. Fluids 12, II–65–75.
Rivet, J. P., Henon, M., Frisch, U. & d’Humieres, D. 1988 Simulating fully three-dimensional external flow by lattice gas methods. Europhys. Lett. 7, 231.
Roberts, J. B. 1973 Coherence measurements in an axisymmetric wake. AIAA J. 11, 15691571.
Roos, F. W. & Willmarth, W. W. 1971 Some experimental results on sphere and disk drag. AIAA J. 9, 285291.
Shenoy, A. R. & Kleinstreuer, C. 2008 Flow over a thin circular disk at low to moderate Reynolds numbers. J. Fluid Mech. 605, 253262.
Shenoy, A. R. & Kleinstreuer, C. 2010 Influence of aspect ratio on the dynamics of a freely moving circular disk. J. Fluid Mech. 653, 463487.
Tchoufag, J., Fabre, D. & Magnaudet, J. 2014 Global linear stability analysis of the wake and path of buoyancy-driven disks and thin cylinders. J. Fluid Mech. 740, 278311.
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620631.
Williamson, C. H. K. & Govardhan, R. 2008 A brief review of recent results in vortex-induced vibrations. J. Wind Engng Ind. Aerodyn. 96, 713735.
Willmarth, W. W., Hawk, N. E. & Harvey, R. L. 1964 Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids 7, 197208.
Yang, J., Liu, M., Wu, G., Liu, Q. & Zhang, X. 2015 Low-frequency characteristics in the wake of a circular disk. Phys. Fluids 27 (6), 064101.
Yang, J., Liu, M., Wu, G., Zhong, W. & Zhang, X. 2014a Numerical study on coherent structure behind a circular disk. J. Fluids Struct. 51, 172188.
Yang, J., Tian, X. & Li, X. 2014b Hydrodynamic characteristics of an oscillating circular disk under steady in-plane current conditions. Ocean Engng 75, 5363.
Yang, J., Wu, G., Zhong, W. & Liu, M. 2014c Numerical study on bifurcations in the wake of a circular disk. Intl J. Comput. Fluid Dyn. 28 (5), 187203.
Zhong, H. J. & Lee, C. B. 2012 The wake of falling disks at low Reynolds numbers. Acta Mechanica Sin. 28, 15.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Tian et al. supplementary movie
Movie 1

 Video (1.1 MB)
1.1 MB
VIDEO
Movies

Tian et al. supplementary movie
Movie 2

 Video (1.6 MB)
1.6 MB
VIDEO
Movies

Tian et al. supplementary movie
Movie 3

 Video (10.8 MB)
10.8 MB
VIDEO
Movies

Tian et al. supplementary movie
Movie 4

 Video (1.6 MB)
1.6 MB
VIDEO
Movies

Tian et al. supplementary movie
Movie 5

 Video (1.3 MB)
1.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed