Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-04T01:32:53.363Z Has data issue: false hasContentIssue false

Flow and fouling in membrane filters: effects of membrane morphology

Published online by Cambridge University Press:  06 April 2017

P. Sanaei*
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
L. J. Cummings
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
*
Email address for correspondence: ps468@njit.edu

Abstract

Membrane filters are used extensively in microfiltration applications. The type of membrane used can vary widely depending on the particular application, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The solution to this challenge might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane-pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size and shape, etc.); (ii) describe fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apel, P. 2001 Track etching technique in membrane technology. Radiat. Meas. 34 (1), 559566.Google Scholar
Bolton, G., LaCasse, D. & Kuriyel, R. 2006a Combined models of membrane fouling: development and application to microfiltration and ultrafiltration of biological fluids. J. Membr. Sci. 277, 7584.CrossRefGoogle Scholar
Bolton, G. R., Boesch, A. W. & Lazzara, M. J. 2006b The effect of flow rate on membrane capacity: development and application of adsorptive membrane fouling models. J. Membr. Sci. 279, 625634.Google Scholar
Brown, A. I., Levison, P., Titchener-Hooker, N. J. & Lye, G. J. 2009 Membrane pleating effects in 0. 2 μm rated microfiltration cartridges. J. Membr. Sci. 341, 7683.Google Scholar
Dalwadi, M. P., Griffiths, I. M. & Bruna, M. 2015 Understanding how porosity gradients can make a better filter using homogenization theory. Proc. R. Soc. Lond. A 471, 2182.Google Scholar
Daniel, R. C., Billing, J. M., Russell, R. L., Shimskey, R. W., Smith, H. D. & Peterson, R. A. 2011 Integrated pore blockage-cake filtration model for crossflow filtration. Chem. Engng Res. Des. 89, 10941103.CrossRefGoogle Scholar
Dechadilok, P. & Deen, W. M. 2006 Hindrance factors for diffusion and convection in pores. Ind. Engng Chem. Res. 45, 69536959.Google Scholar
Giglia, S. & Straeffer, G. 2012 Combined mechanism fouling model and method for optimization of series microfiltration performance. J. Membr. Sci. 417, 144153.Google Scholar
Griffiths, I. M., Kumar, A. & Stewart, P. S. 2014 A combined network model for membrane fouling. J. Colloid Interface Sci. 432, 1018.CrossRefGoogle ScholarPubMed
Griffiths, I. M., Kumar, A. & Stewart, P. S. 2016 Designing asymmetric multilayered membrane filters with improved performance. J. Membr. Sci. 511, 108118.CrossRefGoogle Scholar
Ho, C.-C. & Zydney, A. L. 1999 Effect of membrane morphology on the initial rate of protein fouling during microfiltration. J. Membr. Sci. 155, 261275.CrossRefGoogle Scholar
Ho, C.-C. & Zydney, A. L. 2000 A combined pore blockage and cake filtration model for protein fouling during microfiltration. J. Membr. Sci. 232, 389399.Google ScholarPubMed
Hwang, K. J., Liao, C. Y. & Tung, K. L. 2007 Analysis of particle fouling during microfiltration by use of blocking models. J. Membr. Sci. 287, 287293.Google Scholar
Iritani, E. 2013 A review on modeling of pore-blocking behaviors of membranes during pressurized membrane filtration. Drying Tech. 31 (2), 146162.Google Scholar
Jackson, N. B., Bakhshayeshi, M., Zydney, A. L., Mehta, A., van Reis, R. & Kuriyel, R. 2014 Internal virus polarization model for virus retention by the Ultipor VF grade DV20 membrane. Biotechnol. Prog. 30 (4), 856863.Google Scholar
Kanani, D. M., Fissell, W. H., Roy, S., Dubnisheva, A., Fleischman, A. & Zydney, A. L. 2010 Permeability–selectivity analysis for ultrafiltration: effect of pore geometry. J. Membr. Sci. 349, 405410.Google Scholar
Kumar, A., Martin, J. & Kuriyel, R. 2015 Scale-up of sterilizing-grade membrane filters from discs to pleated cartridges: effects of operating parameters and solution properties. PDA J. Pharm. Sci. Tech. 69.1, 7487.Google Scholar
Mehta, A. & Zydney, A. L. 2005 Permeability and selectivity analysis for ultrafiltration membranes. J. Membr. Sci. 249, 245249.CrossRefGoogle Scholar
Mehta, A. & Zydney, A. L. 2006 Effect of membrane charge on flow and protein transport during ultrafiltration. Biotechnol. Prog. 22 (2), 484492.Google Scholar
Meng, F., Chae, S.-R., Drews, A., Kraume, M., Shin, H.-S. & Yang, F. 2009 Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res. 43, 14891512.Google Scholar
Mochizuki, S. & Zydney, A. L. 1993 Theoretical analysis of pore size distribution effects on membrane transport. J. Membr. Sci. 82, 211227.Google Scholar
Polyakov, S. V., Maksimov, E. D. & Polyakov, V. S. 1995 One-dimensional micro filtration model. Theoret. Found. Chem. Engng 29 (4), 329332.Google Scholar
Polyakov, V. S. 1998 Design of micro filters operating under depth filtration conditions. Theoret. Found. Chem. Engng 32 (1), 1822.Google Scholar
Polyakov, Y. S. 2008 Depth filtration approach to the theory of standard blocking: prediction of membrane permeation rate and selectivity. J. Membr. Sci. 322, 8190.CrossRefGoogle Scholar
Polyakov, Y. S. & Zydney, A. L. 2013 Ultrafiltration membrane performance: effects of pore blockage/constriction. J. Membr. Sci. 434, 106120.CrossRefGoogle Scholar
Pujar, N. S. & Zydney, A. L. 1997 Charge regulation and electrostatic interactions for a spherical particle in a cylindrical pore. J. Colloid Interface Sci. 192, 338349.Google Scholar
Sanaei, P., Richardson, G. W., Witelski, T. & Cummings, L. J. 2016 Flow and fouling in a pleated membrane filter. J. Fluid Mech. 795, 3659.Google Scholar
Van der Sman, R. G. M., Vollebregt, H. M., Mepschen, A. & Noordman, T. R. 2012 Review of hypotheses for fouling during beer clarification using membranes. J. Membr. Sci. 396, 2231.Google Scholar
Zeman, L. J. & Zydney, A. L. 1996 Microfiltration and Ultrafiltration: Principles and Applications. Marcel Dekker.Google Scholar
Zydney, A. L. 2011 High performance ultrafiltration membranes: pore geometry and charge effects. Membr. Sci. Technol. Ser. 14, 333352.Google Scholar