Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-27T07:09:10.170Z Has data issue: false hasContentIssue false

The flow about the trailing edge of a supersonic oscillating aerofoil

Published online by Cambridge University Press:  29 March 2006

P. G. Daniels
Affiliation:
Department of Mathematics, University College London

Abstract

A description is given of the high Reynolds number (R [Gt ] 1) laminar fluid motion in the neighbourhood of the trailing edge of a flat plate undergoing small amplitude sinusoidal oscillations in a uniform supersonic stream. It is shown that for oscillations of frequency ω* = O(R¼) and amplitude h* = O(R−½) a rational description of the flow at the trailing edge is based on a ‘triple-deck’ structure, which is a familiar feature of steady trailing-edge flows. The theory may be extended in a straightforward manner to include slow oscillations of the plate, and it is shown in general that the occurrence of separation at the trailing edge is dependent upon the magnitude of the product of the frequency and amplitude of oscillation, and that if ω* [les ] O(R½) then the flow is maintained right up to the trailing edge provided that h*ω* [Lt ] R−¼. The precise condition for the occurrence of separation is found for frequencies in the range ω* R−¼.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, S. N. & Daniels, P. G. 1975 J. Fluid Mech. 67, 743.
Brown, S. K. & Stewartson, K. 1970 J. Fluid Mech. 42, 561.
Burggraf, O. R. & Jobe, C. E. 1974 Proc. Roy. Soc. A 340, 91.
Crocco, L. 1946 Mono. Sci. Aero. Assoc. Calt. Aero., Roma, no. 3.
Daniels, P. G. 1974a Quart. J. Mech. Appl. Math. 27, 175.
Daniels, P. G. 1974b J. Fluid Mech. 63, 641.
Daniels, P. G. 1974c Ph.D. thesis, University of London.
Goldstein, S. 1930 Proc. Camb. Phil. Soc. 26, 1.
Gunn, J. C. 1947 Phil. Trans. A 240, 327.
Hönl, H. 1944 Ann. Phys. 43, 437.
Kármán, T. Von 1935 Z. angew. Math. Mech. 15, 56.
Kuo, Y. H. 1953 J. Math. & Phys. 32, 83.
Messiter, A. F. 1970 S.I.A.M. J. Appl. Math. 18, 241.
Miles, J. W. 1947 J. Aero. Sci. 14, 357.
Miles, J. W. 1949 J. Aero. Sci. 16, 252.
Moore, F. K. 1951 N.A.C.A. Tech. Note, no. 2471.
Possio, C. 1937 Acta Pont. Acad. Sci. 1, 93.
Shen, S. F. & Crimi, P. 1965 J. Fluid Mech. 23, 585.
Stewartson, K. 1950 Quart. J. Mech. Appl. Math. 3, 182.
Stewartson, K. 1951 Quart. J. Mech. Appl. Math. 4, 182.
Stewartson, K. 1964 The Theory of Laminar Boundary Layers in Compressible Fluids. Oxford: Clarendon Press.
Stewartson, K. 1969 Mathematika, 16, 106.
Stewartson, K. & Williams, P. G. 1969 Proc. Roy. Soc. A 312, 181.
Temple, G. 1953 Modern Developments in Fluid Mechanics, vol. 1 (ed. L. Howarth). Oxford: Clarendon Press.
Van De Vooren, A. I. & Veldman, A. E. P. 1975 (To be published.)