Skip to main content Accessibility help

Floquet stability analysis of capsules in viscous shear flow

  • Spencer H. Bryngelson (a1) and Jonathan B. Freund (a1) (a2)


Observations in experiments and simulations show that the kinematic behaviour of an elastic capsule, suspended and rotating in shear flow, depends upon the flow strength, the capsule membrane material properties and its at-rest shape. We develop a linear stability description of the periodically rotating base state of this coupled system, as represented by a boundary integral flow formulation with spherical harmonic basis functions describing the elastic capsule geometry. This yields Floquet multipliers that classify the stability of the capsule motion for elastic capillary numbers $Ca$ ranging from $Ca=0.01$ to 5. Viscous dissipation rapidly damps most perturbations. However, for all cases, a single component grows or decays slowly, depending upon $Ca$ , over many periods of the rotation. The transitions in this stability behaviour correspond to the different classes of rotating motion observed in previous studies.


Corresponding author

Email address for correspondence:


Hide All
Adams, J. C. & Swarztrauber, P. N.1997 SPHEREPACK 2.0: a model development facility. Tech. Rep. NCAR/TN-436-STR. NCAR.
Aouane, O., Thiébaud, M., Benyoussef, A., Wagner, C. & Misbah, C. 2014 Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos. Phys. Rev. E 90 (3), 033011.
Bagheri, S. 2013 Koopman-mode decomposition of the cylinder wake. J. Fluid Mech. 726, 596623.
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.
Barthès-Biesel, D. 2009 Capsule motion in flow: deformation and membrane buckling. C. R. Phys. 10, 764774.
Barthès-Biesel, D. 2016 Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48, 2552.
Blackburn, H. M. & Lopez, J. M. 2003 The onset of three-dimensional standing and modulated travelling waves in a periodically driven cavity flow. J. Fluid Mech. 497, 289317.
Blennerhassett, P. J. & Bassom, A. P. 2002 The linear stability of flat Stokes layers. J. Fluid Mech. 464, 393410.
Blennerhassett, P. J. & Bassom, A. P. 2007 The linear stability of high-frequency oscillatory flow in a torsionally oscillating cylinder. J. Fluid Mech. 576, 491505.
Bryngelson, S. H. & Freund, J. B. 2016 Capsule-train stability. Phys. Rev. Fluids 1, 033201.
Bryngelson, S. H. & Freund, J. B. 2018 Global stability of flowing red blood cell trains. Phys. Rev. Fluids 3, 073101.
Cazemier, W., Verstappen, R. W. C. P. & Veldman, A. E. P. 1998 Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10 (7), 16851699.
Chang, T. M. 2010 Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Intersci. Rev. Nanomed. Nanobiotechnol. 2, 418430.
Cordasco, D. & Bagchi, P. 2013 Orbital drift of capsules and red blood cells in shear flow. Phys. Fluids 25, 091902.
Davies, C., Thomas, C., Bassom, A. P. & Blennerhassett, P. J. 2015 The linear impulse response of disturbances in an oscillatory Stokes layer. Procedia IUTAM 14, 381384.
Dey, N. S., Majumdar, S. & Rao, M. E. B. 2008 Multiparticulate drug delivery systems for controlled release. Trop. J. Pharm. Res. 7 (3), 10671075.
Dupire, J., Abkarian, M. & Viallat, A. 2010 Chaotic dynamics of red blood cells in a sinusoidal flow. Phys. Rev. Lett. 104, 168101.
Dupont, C., Delahaye, F., Barthès-Biesel, D. & Salsac, A.-V. 2016 Stable equilibrium configurations of an oblate capsule in simple shear flow. J. Fluid Mech. 791, 738757.
Dupont, C., Salsac, A.-V. & Barthès-Biesel, D. 2013 Off-plane motion of a prolate capsule in shear flow. J. Fluid Mech. 721, 180198.
Einarsson, J., Angilella, J. R. & Mehlig, B. 2014 Orientational dynamics of weakly inertial axisymmetric particles in steady viscous flow. Physica D 278–279, 7985.
Foessel, E., Walter, J., Salsac, A.-V. & Barthès-Biesel, D. 2011 Influence of internal viscosity on the large deformation and buckling of a spherical capsule in simple shear flow. J. Fluid Mech. 672, 477486.
Freund, J. B. & Zhao, H.2010 Hydrodynamics of Capsules and Biological Cells, chap. A. Fast high-resolution boundary integral method for multiple interacting blood cells, pp. 71–111. Chapman and Hall/CRC.
Furlow, B. 2009 Contrast-enhanced ultrasound. Radiol. Technol. 80, 547561.
Gåserød, O., Sannes, A. & Skjåk-Bræk, G. 1999 Microcapsules of alginate–chitosan. II. A study of capsule stability and permeability. Biomaterials 20 (8), 773783.
Gibbs, B. F., Kermasha, S., Alli, I. & Mulligan, C. N. 1999 Encapsulation in the food industry: a review. Intl J. Food Sci. Neut. 50, 213224.
Gioria, R. S., Jabardo, P. J. S., Carmo, B. S. & Meneghini, J. R. 2009 Floquet stability analysis of the flow around an oscillating cylinder. J. Fluids Struct. 25, 676686.
Goosen, M. F., O’Shea, G. M., Gharapetian, H. M., Chou, S. & Sun, A. M. 1985 Optimization of microencapsulation parameters: semipermeable microcapsules as a bioartifical pancreas. Biotechnol. Bioengng 27 (2), 146150.
Guckenberger, A. & Gekle, S. 2017 Theory and algorithms to compute Helfrich bending forces: a review. J. Phys.: Condens. Matter 29 (20), 203001.
Juniper, M. 2011 Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition. J. Fluid Mech. 667, 272308.
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.
Kuhtreiber, W. M., Lanza, R. P. & Chick, W. L. 1998 Cell Encapsulation Technology and Therapeutics. Birkhäuser.
Lac, E., Barthès-Biesel, D., Pelekasis, N. A. & Tsamopoulos, J. 2004 Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303334.
Leelajariyakul, S., Noguchi, H. & Kiatkamjornwong, S. 2008 Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics. Prog. Org. Coat. 62 (2), 145161.
Lim, F. 1984 Biomedical Applications of Microencapsulations, 1st edn. CRC.
Liu, J. 2003 A First Course in the Qualitative Theory of Differential Equations. Prentice Hall.
Martins, I. M., Barreiro, M. F., Coelho, M. & Rodrigues, A. E. 2014 Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chem. Engng J. 245, 191200.
Miyazawa, K., Yajima, I., Kaneda, I. & Yanaki, T. 2000 Preparation of a new soft capsule for cosmetics. J. Cosmet. Sci. 51 (4), 239252.
Paret, N., Trachsel, A., Berthier, D. L. & Herrmann, A. 2015 Controlled release of encapsulated bioactive volatiles by rupture of the capsule wall through the light-induced generation of a gas. Chem. Intl Ed. 54 (7), 22752279.
Pier, B. & Schmid, P. J. 2017 Linear and nonlinear dynamics of pulsatile channel flow. J. Fluid Mech. 815, 435480.
Pop, F. 2011 Chemical stabilization of oils rich in long-chain polyunsaturated fatty acids during storage. Food Sci. Technol. Intl 17 (2), 111117.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Pumhössel, T., Hehenberger, P. & Zeman, K. 2014 Reduced-order modelling of self-excited, time-periodic systems using the method of proper orthogonal decomposition and the Floquet theory. Math. Comput. Model. Dyn. Syst. 20 (6), 528545.
Rallison, J. M. & Acrivos, A. 1978 A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89, 191200.
Rochal, S. B., Lorman, V. L. & Mennessier, G. 2005 Viscoelastic dynamics of spherical composite vesicles. Phys. Rev. E 71, 021905.
Rowley, C. W., Mezic, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.
Sacker, R.1964 On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations. Tech. Rep. IMM-NYU 333. New York University.
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.
Schmid, P. J. & Henningson, D. S. 2012 Stability and Transition in Shear Flows. Springer Science and Business Media.
Schmid, P. J. & Kytomaa, H. K. 1994 Transient and asymptotic stability of granular flow. J. Fluid Mech. 264, 255275.
Sheard, G. J., Fitzgerald, M. J. & Ryan, K. 2009 Cylinders with square cross-section: wake instabilities with incidence angle variation. J. Fluid Mech. 630, 4369.
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2003 From spheres to circular cylinders: the stability and flow structures of bluff ring wakes. J. Fluid Mech. 492, 147180.
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004 From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings. J. Fluid Mech. 506, 4578.
Skalak, R., Tozeren, A., Zarda, P. R. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13, 245264.
Skotheim, J. M. & Secomb, T. W. 2007 Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98 (7), 078301.
Thomas, C., Bassom, A. P. & Blennerhassett, P. J. 2012 The linear stability of oscillating pipe flow. Phys. Fluids 24, 014106.
Thomas, C., Blennerhassett, P. J., Bassom, A. P. & Davies, C. 2015 The linear stability of a Stokes layer subjected to high-frequency perturbations. J. Fluid Mech. 764, 193218.
Verhulst, F. 2006 Nonlinear Differential Equations and Dynamical Systems. Springer.
Vericella, J. J., Baker, S. E., Stolaroff, J. K., Duoss, E. B., Hardin, J. O. IV, Lewicki, J., Glogowski, E., Floyd, W. C., Valdez, C. A., Smith, W. L., Satcher, J. H. Jr., Bourcier, W. L., Spadaccini, C. M., Lewis, J. A. & Aines, R. D. 2015 Encapsulated liquid sorbents for carbon dioxide capture. Nature Commun. 6, 6124.
Von Kerczek, C. H. 1982 The instability of oscillatory plane Poiseuille flow. J. Fluid Mech. 116, 91114.
Walter, A., Rehage, H. & Leonhard, H. 2001 Shear induced deformation of microcapsules: shape oscillations and membrane folding. Colloid Surf. 183–185, 123132.
Wang, Z., Sui, Y., Spelt, P. D. M. & Wang, W. 2013 Three-dimensional dynamics of oblate and prolate capsules in shear flow. Phys. Rev. E 88, 053021.
Zhao, H., Isfahani, A. H. G., Olson, L. & Freund, J. B. 2010 A spectral boundary integral method for micro-circulatory cellular flows. J. Comput. Phys. 229, 37263744.
Zhao, H. & Shaqfeh, E. S. G. 2013 The shape stability of a lipid vesicle in a uniaxial extensional flow. J. Fluid Mech. 719, 345361.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Floquet stability analysis of capsules in viscous shear flow

  • Spencer H. Bryngelson (a1) and Jonathan B. Freund (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed