Skip to main content Accessibility help
×
Home

Filament mechanics in a half-space via regularised Stokeslet segments

  • B. J. Walker (a1), K. Ishimoto (a2), H. Gadêlha (a3) and E. A. Gaffney (a1)

Abstract

We present a generalisation of efficient numerical frameworks for modelling fluid–filament interactions via the discretisation of a recently developed, non-local integral equation formulation to incorporate regularised Stokeslets with half-space boundary conditions, as motivated by the importance of confining geometries in many applications. We proceed to utilise this framework to examine the drag on slender inextensible filaments moving near a boundary, firstly with a relatively simple example, evaluating the accuracy of resistive force theories near boundaries using regularised Stokeslet segments. This highlights that resistive force theories do not accurately quantify filament dynamics in a range of circumstances, even with analytical corrections for the boundary. However, there is the notable and important exception of movement in a plane parallel to the boundary, where accuracy is maintained. In particular, this justifies the judicious use of resistive force theories in examining the mechanics of filaments and monoflagellate microswimmers with planar flagellar patterns moving parallel to boundaries. We proceed to apply the numerical framework developed here to consider how filament elastohydrodynamics can impact drag near a boundary, analysing in detail the complex responses of a passive cantilevered filament to an oscillatory flow. In particular, we document the emergence of an asymmetric periodic beating in passive filaments in particular parameter regimes, which are remarkably similar to the power and reverse strokes exhibited by motile $9+2$ cilia. Furthermore, these changes in the morphology of the filament beating, arising from the fluid–structure interactions, also induce a significant increase in the hydrodynamic drag of the filament.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Filament mechanics in a half-space via regularised Stokeslet segments
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Filament mechanics in a half-space via regularised Stokeslet segments
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Filament mechanics in a half-space via regularised Stokeslet segments
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: benjamin.walker@maths.ox.ac.uk

References

Hide All
Ainley, J., Durkin, S., Embid, R., Boindala, P. & Cortez, R. 2008 The method of images for regularized Stokeslets. J. Comput. Phys. 227 (9), 46004616.
Balazs, A. C., Bhattacharya, A., Tripathi, A. & Shum, H. 2014 Designing bioinspired artificial cilia to regulate particle–surface interactions. J. Phys. Chem. Lett. 5 (10), 16911700.
Berg, H. C. & Anderson, R. A. 1973 Bacteria swim by rotating their flagellar filaments. Nature 245 (5425), 380382.
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9 (1), 339398.
Brenner, H. 1962 Effect of finite boundaries on the Stokes resistance of an arbitrary particle. J. Fluid Mech. 12 (01), 3548.
Cortez, R. 2001 The method of regularized Stokeslets. SIAM J. Sci. Comput. 23 (4), 12041225.
Cortez, R. 2018 Regularized Stokeslet segments. J. Comput. Phys. 375, 783796.
Curtis, M. P., Kirkman-Brown, J. C., Connolly, T. J. & Gaffney, E. A. 2012 Modelling a tethered mammalian sperm cell undergoing hyperactivation. J. Theor. Biol. 309, 110.
Delmotte, B., Climent, E. & Plouraboué, F. 2015 A general formulation of Bead Models applied to flexible fibers and active filaments at low Reynolds number. J. Comput. Phys. 286, 1437.
Elgeti, J., Kaupp, U. B. & Gompper, G. 2010 Hydrodynamics of sperm cells near surfaces. Biophys. J. 99 (4), 10181026.
Fauci, L. J. & McDonald, A. 1995 Sperm motility in the presence of boundaries. Bull. Math. Biol. 57 (5), 679699.
Friedrich, B. M., Riedel-Kruse, I. H., Howard, J. & Julicher, F. 2010 High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J. Expl Biol. 213 (8), 12261234.
Gadêlha, H., Gaffney, E. A., Smith, D. J. & Kirkman-Brown, J. C. 2010 Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration? J. R. Soc. Interface 7 (53), 16891697.
Gaffney, E. A., Gadêlha, H., Smith, D. J., Blake, J. R. & Kirkman-Brown, J. C. 2011 Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43 (1), 501528.
Gray, J. 1928 Ciliary Movement. Cambridge University Press.
Gray, J. & Hancock, G. J. 1955 The propulsion of sea-urchin spermatozoa. J. Expl Biol. 32 (4), 802814.
Guglielmini, L., Kushwaha, A., Shaqfeh, E. S. G. & Stone, H. A. 2012 Buckling transitions of an elastic filament in a viscous stagnation point flow. Phys. Fluids 24 (12), 123601.
Hall-McNair, A. L., Gallagher, M. T., Montenegro-Johnson, T. D., Gadêlha, H. & Smith, D. J.2019 Efficient implementation of elastohydrodynamics via integral operators. 1–43; arXiv:1903.03427.
Hancock, G. J. 1953 The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. Ser. A 217 (1128), 96121.
Ishijima, S. 2011 Dynamics of flagellar force generated by a hyperactivated spermatozoon. Reproduction 142 (3), 409415.
Ishimoto, K., Gadêlha, H., Gaffney, E. A., Smith, D. J. & Kirkman-Brown, J. 2017 Coarse-graining the fluid flow around a human sperm. Phys. Rev. Lett. 118 (12), 124501.
Ishimoto, K. & Gaffney, E. A. 2015 Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis. J. R. Soc. Interface 12 (106), 20150172.
Ishimoto, K. & Gaffney, E. A. 2016 Mechanical tuning of mammalian sperm behaviour by hyperactivation, rheology and substrate adhesion: a numerical exploration. J. R. Soc. Interface 13 (124), 20160633.
Ishimoto, K. & Gaffney, E. A. 2018 An elastohydrodynamical simulation study of filament and spermatozoan swimming driven by internal couples. IMA J. Appl. Maths 83 (4), 655679.
Johnson, R. E. & Brokaw, C. J. 1979 Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory. Biophys. J. 25 (1), 113127.
Katz, D. F., Blake, J. R. & Paveri-Fontana, S. L. 1975 On the movement of slender bodies near plane boundaries at low Reynolds number. J. Fluid Mech. 72 (03), 529540.
Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90 (2), 400412.
Liu, Y., Chakrabarti, B., Saintillan, D., Lindner, A. & du Roure, O. 2018 Morphological transitions of elastic filaments in shear flow. Proc. Natl Acad. Sci. USA 115 (38), 94389443.
Moreau, C., Giraldi, L. & Gadêlha, H. 2018 The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella. J. R. Soc. Interface 15 (144), 20180235.
Nag, S. & Resnick, A. 2017 Biophysics and biofluid dynamics of primary cilia: evidence for and against the flow-sensing function. Am. J. Physiol.-Renal Physiol. 313 (3), F706F720.
Nosrati, R., Driouchi, A., Yip, C. M. & Sinton, D. 2015 Two-dimensional slither swimming of sperm within a micrometre of a surface. Nat. Commun. 6 (1), 8703.
Ohmuro, J. & Ishijima, S. 2006 Hyperactivation is the mode conversion from constant-curvature beating to constant-frequency beating under a constant rate of microtubule sliding. Mol. Reproduction Dev. 73 (11), 14121421.
Olson, S. D., Lim, S. & Cortez, R. 2013 Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized Stokes formulation. J. Comput. Phys. 238, 169187.
Ooi, E. H., Smith, D. J., Gadelha, H., Gaffney, E. A. & Kirkman-Brown, J. 2014 The mechanics of hyperactivation in adhered human sperm. R. Soc. Open Sci. 1 (2), 140230.
Pozrikidis, C. 2010 Shear flow over cylindrical rods attached to a substrate. J. Fluids Struct. 26 (3), 393405.
Pozrikidis, C. 2011 Shear flow past slender elastic rods attached to a plane. Intl J. Solids Struct. 48 (1), 137143.
Ramia, M., Tullock, D. L. & Phan-Thien, N. 1993 The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65 (2), 755778.
Riedel-Kruse, I. H. & Hilfinger, A. 2007 How molecular motors shape the flagellar beat. HFSP J. 1 (3), 192208.
Roper, M., Dreyfus, R., Baudry, J., Fermigier, M., Bibette, J. & Stone, H. A. 2006 On the dynamics of magnetically driven elastic filaments. J. Fluid Mech. 554, 167190.
du Roure, O., Lindner, A., Nazockdast, E. N. & Shelley, M. J. 2019 Dynamics of flexible fibers in viscous flows and fluids. Annu. Rev. Fluid Mech. 51 (1), 539572.
Schulman, R. D., Backholm, M., Ryu, W. S. & Dalnoki-Veress, K. 2014 Undulatory microswimming near solid boundaries. Phys. Fluids 26 (10), 101902.
Shampine, L. F. & Reichelt, M. W. 1997 The MATLAB ODE Suite. SIAM J. Sci. Comput. 18 (1), 122.
Shum, H., Tripathi, A., Yeomans, J. M. & Balazs, A. C. 2013 Active ciliated surfaces expel model swimmers. Langmuir 29 (41), 1277012776.
Simons, J., Olson, S., Cortez, R. & Fauci, L. 2014 The dynamics of sperm detachment from epithelium in a coupled fluid-biochemical model of hyperactivated motility. J. Theor. Biol. 354, 8194.
Smith, D. J. 2009 A boundary element regularized Stokeslet method applied to cilia- and flagella-driven flow. Proc. R. Soc. A 465 (2112), 36053626.
Smith, D. J., Gaffney, E. A., Blake, J. R. & Kirkman-Brown, J. C. 2009 Human sperm accumulation near surfaces: a simulation study. J. Fluid Mech. 621, 289320.
Smith, D. J., Montenegro-Johnson, T. D. & Lopes, S. S. 2019 Symmetry-breaking cilia-driven flow in embryogenesis. Annu. Rev. Fluid Mech. 51 (1), 105128.
Sznitman, J., Shen, X., Sznitman, R. & Arratia, P. E. 2010 Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number. Phys. Fluids 22 (12), 121901.
Tornberg, A. K. & Shelley, M. J. 2004 Simulating the dynamics and interactions of flexible fibers in Stokes flows. J. Comput. Phys. 196 (1), 840.
Utada, A. S., Bennett, R. R., Fong, J. C. N., Gibiansky, M. L., Yildiz, F. H., Golestanian, R. & Wong, G. C. L. 2014 Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat. Commun. 5 (1), 4913.
Yonekura, K., Maki-Yonekura, S. & Namba, K. 2003 Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424 (6949), 643650.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Walker et al. supplementary material
Walker et al. supplementary material

 Unknown (236 KB)
236 KB

Filament mechanics in a half-space via regularised Stokeslet segments

  • B. J. Walker (a1), K. Ishimoto (a2), H. Gadêlha (a3) and E. A. Gaffney (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed