Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T02:55:54.469Z Has data issue: false hasContentIssue false

Faxén form of time-domain force on a sphere in unsteady spatially varying viscous compressible flows

Published online by Cambridge University Press:  06 March 2017

Subramanian Annamalai*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville FL 32611, USA
S. Balachandar
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville FL 32611, USA
*
Email address for correspondence: subbu.ase@gmail.com

Abstract

An explicit expression for the time-dependent force on a stationary, finite-sized spherical particle located in an unsteady inhomogeneous ambient flow is presented. The force expression accounts for both viscous and compressible effects. Towards this end, a time-harmonic plane travelling wave of a given frequency propagating in a viscous compressible flow over a sphere is considered. Linearized compressible Navier–Stokes equations are solved to obtain an analytical expression for the force exerted on the particle in the frequency domain. The force obtained in the Laplace space due to a travelling wave of a given frequency and wavenumber is then generalized to any arbitrary incoming flow. This is achieved by relating the radial and tangential velocity components in the Laplace space to the surface-averaged radial velocity and volume-averaged velocity vectors respectively in the time space. Moreover an expression relating the surface-averaged radial velocity and volume-averaged velocity vector has been provided. The total force is written as a summation of the undisturbed and disturbed force (quasi-steady, inviscid-unsteady and viscous-unsteady) contributions. The force contributions thus obtained are expressed as comprising of two parts – that arising due to spatial variation in the ambient flow and the other arising due to temporal variation. The current formulation is applicable to inhomogeneous ambient flows, however in the limit of negligible Reynolds and Mach numbers. The results are applicable even for particles of sizes larger than the acoustic wavelength. The accuracy of the explicit time-domain force expression is first tested by computing the force on an 80 mm diameter particle due to a weak planar expansion fan. Extension of this formulation when nonlinear effects become important is also proposed and tested by considering strong expansion fans. The results thus obtained are compared against corresponding axisymmetric numerical simulations.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annamalai, S., Balachandar, S. & Parmar, M. K. 2014 Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium. Phys. Rev. E 89, 053008.Google Scholar
Bagchi, P. & Balachandar, S. 2002 Steady planar straining flow past a rigid sphere at moderate Reynolds number. J. Fluid Mech. 466, 365407.Google Scholar
Basset, A. B. 1888 Treatise on Hydrodynamics. Deighton, Bell and Company.Google Scholar
Bedeaux, D. & Mazur, P. 1974 A generalization of Faxén’s theorem to nonsteady motion of a sphere through a compressible fluid in arbitrary flow. Physica 78 (3), 505515.Google Scholar
Blackstock, D. T. 2000 Fundamentals of Physical Acoustics. Wiley.Google Scholar
Boussinesq, J. 1885 Sur la résistance qu’oppose un liquide indéfini en repos. C. R. Acad. Sci. Paris 100, 935937.Google Scholar
Clift, R. & Gauvin, W. H. 1970 The motion of particles in turbulent gas streams. Proc. Chemeca 1, 1428.Google Scholar
Crowe, C., Sommerfeld, M. & Tsuji, Y. 1998 Multiphase Flow with Droplets and Particles. CRC Press.Google Scholar
DLMF 2010 NIST digital library of mathematical functions, http://dlmf.nist.gov/, Release 1.0.7 of 2014-03-21, online companion to Olver et al. (2010).Google Scholar
Doinikov, A. A. 1994 Acoustic radiation pressure on a rigid sphere in a viscous-fluid. Proc. R. Soc. Lond. A 447 (1931), 447466.Google Scholar
Eames, I. & Hunt, J. C. R. 1997 Inviscid flow around bodies moving in weak density gradients without buoyancy effects. J. Fluid Mech. 353, 331355.CrossRefGoogle Scholar
Eames, I. & Hunt, J. C. R. 2004 Forces on bodies moving unsteadily in rapidly compressed flows. J. Fluid Mech. 505, 349364.Google Scholar
Faxén, H. 1922 Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen, ebenen Wänden eingeschlossen ist. Ann. Phys. 373, 89119.Google Scholar
Gatignol, R. 1983 The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes-flow. J. Méc. Théor. Appl. 2 (2), 143160.Google Scholar
Guz, A. N. 2009 Dynamics of Compressible Viscous Fluid. Cambridge Scientific.Google Scholar
Hamilton, M. F. & Blackstock, D. T.(Eds) 1998 Nonlinear Acoustics. Academic.Google Scholar
Hasegawa, T. 1979 Acoustic radiation force on a sphere in a quasistationary wave field-theory. J. Acoust. Soc. Am. 65 (1), 3240.CrossRefGoogle Scholar
Hasegawa, T. & Yosioka, K. 1969 Acoustic-radiation force on a solid elastic sphere. J. Acoust. Soc. Am. 46 (5, Pt. 2), 11391143.Google Scholar
Haselbacher, A.2005 A WENO reconstruction algorithm for unstructured grids based on explicit stencil construction. AIAA Paper 2005-0879.CrossRefGoogle Scholar
Kim, I., Elgobashi, S. & Sirignano, W. 1998 On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers. J. Fluid Mech. 367, 221253.Google Scholar
Lamb, S. H. 1993 Hydrodynamics. Cambridge University Press.Google Scholar
Landau, L. D. & Lifschitz, E. M. 1987 Fluid Mechanics, Course of Theroretical Physics, vol. 6. Butterworth-Heinemann.Google Scholar
Liepmann, H. W. & Roshko, R. 1957 Elements of Gasdynamics. Courier Corporation.Google Scholar
Longhorn, A. L. 1952 The unsteady, subsonic motion of a sphere in a compressible inviscid fluid. Q. J. Mech. Appl. Maths 5 (1), 6481.Google Scholar
Loth, E. 2008 Compressibility and rarefaction effects on drag of a spherical particle. AIAA J. 46 (9), 22192228.CrossRefGoogle Scholar
Lovalenti, P. M. & Brady, J. F. 1993a The force on a sphere in a uniform-flow with small-amplitude oscillations at finite Reynolds-number. J. Fluid Mech. 256, 607614.Google Scholar
Lovalenti, P. M. & Brady, J. F. 1993b The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds-number. J. Fluid Mech. 256, 561605.Google Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.CrossRefGoogle Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.Google Scholar
Mazur, P. & Bedeaux, D. 1974 A generalization of Faxén’s theorem to nonsteady motion of a sphere through an incompressible fluid in arbitrary flow. Physica 76 (2), 235246.Google Scholar
Mei, R. W. & Adrian, R. J. 1992 Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.Google Scholar
Michaelides, E. E. 1992 A novel way of computing the Basset term in unsteady multiphase flow computations. Phys. Fluids A 4 (7), 15791582.Google Scholar
Ohl, C. D., Tijink, A. & Prosperetti, A. 2003 The added mass of an expanding bubble. J. Fluid Mech. 482, 271290.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W.(Eds) 2010 NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
Oseen, C. W. 1927 Hydrodynamik. Akademische Verlagsgesellschaft.Google Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2008 On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Phil. Trans. R. Soc. Lond. A 366 (1873), 21612175.Google Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2010 Improved drag correlation for spheres and application to shock-tube experiments. AIAA J. 48 (6), 12731276.CrossRefGoogle Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2011 Generalized Basset–Boussinesq–Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106, 084501.Google Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2012 Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352375.Google Scholar
Roe, P. L. 1981 Approximate Riemann solvers, parameter vectors, and difference-schemes. J. Comput. Phys. 43 (2), 357372.Google Scholar
Sridharan, P., Jackson, T. L., Zhang, J., Balachandar, S. & Thakur, S. 2016 Shock interaction with deformable particles using a constrained interface reinitialization scheme. J. Appl. Phys. 119 (6), 064904.Google Scholar
Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.Google Scholar
Taylor, G. I. 1928 The forces on a body placed in a curved or converging stream of fluid. Proc. R. Soc. Lond. A 120 (785), 260283.Google Scholar
Zwanzig, R. & Bixon, M. 1970 Hydrodynamic theory of velocity correlation function. Phys. Rev. A 2 (5), 20052012.CrossRefGoogle Scholar