Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T18:25:25.128Z Has data issue: false hasContentIssue false

Faraday instability on a sphere: Floquet analysis

Published online by Cambridge University Press:  23 September 2016

Ali-higo Ebo Adou
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR CNRS 7636; PSL-ESPCI; Sorbonne Univ.- UPMC, Univ. Paris 6; Sorbonne Paris Cité-UDD, Univ. Paris 7, France LIMSI, CNRS, Université Paris-Saclay, 91405 Orsay, France
Laurette S. Tuckerman*
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR CNRS 7636; PSL-ESPCI; Sorbonne Univ.- UPMC, Univ. Paris 6; Sorbonne Paris Cité-UDD, Univ. Paris 7, France
*
Email address for correspondence: laurette@pmmh.espci.fr

Abstract

Standing waves appear at the surface of a spherical viscous liquid drop subjected to radial parametric oscillation. This is the spherical analogue of the Faraday instability. Modifying the Kumar & Tuckerman (J. Fluid Mech., vol. 279, 1994, pp. 49–68) planar solution to a spherical interface, we linearize the governing equations about the state of rest and solve the resulting equations by using a spherical harmonic decomposition for the angular dependence, spherical Bessel functions for the radial dependence and a Floquet form for the temporal dependence. Although the inviscid problem can, like the planar case, be mapped exactly onto the Mathieu equation, the spherical geometry introduces additional terms into the analysis. The dependence of the threshold on viscosity is studied and scaling laws are found. It is shown that the spherical thresholds are similar to the planar infinite-depth thresholds, even for small wavenumbers for which the curvature is high. A representative time-dependent Floquet mode is displayed.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Batson, W., Zoueshtiagh, F. & Narayanan, R. 2013 The Faraday threshold in small cylinders and the sidewall non-ideality. J. Fluid Mech. 729, 496523.Google Scholar
Bechhoefer, J., Ego, V., Manneville, S. & Johnson, B. 1995 An experimental study of the onset of parametrically pumped surface waves in viscous fluids. J. Fluid Mech. 288, 325350.Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. 225, 505515.Google Scholar
Brunet, P. & Snoeijer, J. H. 2011 Star-drops formed by periodic excitation and on an air cushion – a short review. Eur. Phys. J. 192 (1), 207226.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Cummings, D. L. & Blackburn, D. A. 1991 Oscillations of magnetically levitated aspherical droplets. J. Fluid Mech. 224, 395416.Google Scholar
Ebo Adou, A., Tuckerman, L. S., Shin, S., Chergui, J. & Juric, D. 2016 Faraday instability on a sphere: numerical simulation. J. Fluid Mech. (submitted).Google Scholar
Falcón, C., Falcon, E., Bortolozzo, U. & Fauve, S. 2009 Capillary wave turbulence on a spherical fluid surface in low gravity. Europhys. Lett. 86, 14002.Google Scholar
Futterer, B., Krebs, A., Plesa, A. C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, C. 2013 Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity. J. Fluid Mech. 735, 647683.Google Scholar
Kelvin, S. L. 1863 Elastic spheroidal shells and spheroids of incompressible liquid. Phil. Trans. R. Soc. Lond. 153, 583.Google Scholar
Kumar, K. 1996 Linear theory of Faraday instability in viscous fluids. Proc. R. Soc. Lond. 452, 11131126.Google Scholar
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Marston, P. L. 1980 Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stresses-theory. J. Acoust. Soc. Am. 67 (1), 1526.Google Scholar
Miller, C. A. & Scriven, L. E. 1968 The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32, 417435.Google Scholar
Prosperetti, A. 1980 Normal-mode analysis for the oscillations of a viscous liquid drop in an immiscible liquid. J. Mec. 19, 149182.Google Scholar
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.Google Scholar
Reid, W. H. 1960 The oscillations of a viscous liquid drop. Q. Appl. Math. 18, 8689.CrossRefGoogle Scholar
Shen, C. L., Xie, W. J. & Wei, B. 2010 Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 81 (4), 046305.Google Scholar
Trinh, E. & Wang, T. G. 1982 Large-amplitude free and driven drop-shape oscillations: experimental observations. J. Fluid Mech. 122, 315338.Google Scholar
Trinh, E., Zwern, A. & Wang, T. G. 1982 An experimental study of small-amplitude drop oscillations in immiscible liquid systems. J. Fluid Mech. 115, 453474.Google Scholar
Tsamopoulos, J. A. & Brown, R. A. 1983 Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 514537.Google Scholar
Vega, J. M., Knobloch, E. & Martel, C. 2001 Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio. Physica D 154, 313336.Google Scholar
Wang, T. G., Anilkumar, A. V. & Lee, C. P. 1996 Oscillations of liquid drops: results from USML-1 experiments in space. J. Fluid Mech. 308, 114.Google Scholar