Skip to main content Accessibility help
×
Home

Extreme solitary waves on falling liquid films

  • S. Chakraborty (a1), P.-K. Nguyen (a2), C. Ruyer-Quil (a1) (a3) and V. Bontozoglou (a2)

Abstract

Direct numerical simulation (DNS) of liquid film flow is used to compute fully developed solitary waves and to compare their characteristics with the predictions of low-dimensional models. Emphasis is placed on the regime of high inertia, where available models provide widely differing results. It is found that the parametric dependence of wave properties on inertia is highly non-trivial, and is satisfactorily approximated only by the four-equation model of Ruyer-Quil & Manneville (Eur. Phys. J. B, vol. 15, 2000, pp. 357–369). Detailed comparison of the asymptotic shapes of upstream and downstream tails is performed, and inherent limitations of all long-wave models are revealed. Local flow reversal in front of the main hump, which has been previously discussed in the literature, is shown to occur for an inertia range bounded from below and from above, and the boundaries are interpreted in terms of the capillary origin of the phenomenon. Computational results are reported for the entire range of Froude numbers, providing benchmark data for all wall inclinations.

Copyright

Corresponding author

Email address for correspondence: bont@mie.uth.gr

References

Hide All
Alekseenko, S. V., Nakoryakov, V. Y. & Pokusaev, B. G. 1985 Wave formation on a vertical falling liquid film. AIChE J. 31, 14461460.
Bach, P. & Villadsen, J. 1984 Simulation of the vertical flow of a thin wavy film using a finite element method. Intl J. Heat Mass Transfer 27, 815827.
Balmforth, N. J. & Liu, J. J. 2004 Roll waves in mud. J. Fluid Mech. 519, 3354.
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.
Bontozoglou, V. & Serifi, K. 2008 Falling film flow along steep two-dimensional topography: the effect of inertia. Intl J. Multiphase Flow 34, 734747.
Brevdo, L., Laure, P., Dias, F. & Bridges, T. J. 1999 Linear pulse structure and signalling in a film flow on an inclined plane. J. Fluid Mech. 396, 3771.
Bunov, A., Demekhin, E. & Shkadov, V. Y. 1986 Bifurcations of solitary waves in a flowing liquid film. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 41 (2), 3738.
Chang, H.-C. & Demekhin, E. A. 2002 In Complex Wave Dynamics on Thin Films (ed. Möbius, D. & Miller, R.), Elsevier.
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 11311198.
Dietze, G. F., AL-Sibai, F. & Kneer, R. 2009 Experimental study of flow separation in laminar falling liquid films. J. Fluid Mech. 637, 73104.
Dietze, G. F., Leefken, A. & Kneer, R. 2008 Investigation of the backflow phenomenon in falling liquid films. J. Fluid Mech. 595, 435459.
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B. & Wang, X.-J.2007 Auto07: Continuation and bifurcation software for ordinary differential equations. Tech. Rep. Department of Computer Science, Concordia University, Montreal, Canada (available by FTP from ftp.cs.concordia.ca in directory pub/doedel/auto).
Gao, D., Morley, N. B. & Dhir, V. 2003 Numerical simulation of wavy falling film flow using VOF method. J. Comput. Phys. 192, 624642.
Gjevik, B. 1970 Occurrence of finite-amplitude surface waves on falling liquid films. Phys. Fluids 13, 19181925.
Ho, L.-W. & Patera, A. T. 1990 A legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows. Comput. Meth. Appli. Mech. Engng 80, 355366.
Hoffmann, K. A. & Chiang, S. T. 2000 Computational Fluid Dynamics. EES.
Hood, P. 1976 Frontal solution program for unsymmetric matrices. Intl J. Numer. Meth. Engng 10, 379399.
Jayanti, S. & Hewitt, G. F. 1996 Hydrodynamics and heat transfer of wavy thin film flow. Intl J. Heat Mass Transfer 40, 179190.
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G. 2012 Falling Liquid Films. Springer.
Kapitza, P. L. & Kapitza, S. P. 1949 Wave flow of thin layers of a viscous fluid: III. experimental study of undulatory flow conditions. In Collected papers of P. L. Kapitza (1965) (ed. Haar, D. T.), pp. 690709. Pergamon, (Original paper in Russian: Zh. Ekper. Teor. Fiz. 19, 105–120).
Karapantsios, T. D., Paras, S. V. & Karabelas, A. J. 1989 Statistical characteristics of free falling films at high Reynolds numbers. Intl J. Multiphase Flow 15, 121.
Kunugi, T. & Kino, C. 2005 DNS of falling film structure and heat transfer via MARS method. Comput. Struct. 83, 455462.
Leontidis, V., Vatteville, J., Vlachogiannis, M., Andritsos, N. & Bontozoglou, V. 2010 Nominally two-dimensional waves in inclined film flow in channels of finite width. Phys. Fluids 22, 112106.
Liu, J. & Gollub, J. P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6, 17021712.
Liu, Q. Q., Chen, L., Li, J. C. & Singh, V. P. 2005 Roll waves in overland flow. J. Hydrol. Engng 10 (2), 110117.
Malamataris, N., Vlachogiannis, M. & Bontozoglou, V. 2002 Solitary waves on inclined films: flow structure and binary interactions. Phys. Fluids 14, 10821094.
Miyara, A. 2000a Numerical analysis for a falling liquid film with interfacial waves on an inclined plate. part 2: Effects of interfacial waves on flow dynamics and heat transfer. Heat Transfer Asian Res. 29 (3), 233248.
Miyara, A. 2000b Numerical simulation of wavy liquid film flowing down on a vertical wall and an inclined wall. Intl J. Therm. Sci. 39 (9), 10151027.
Nguyen, L. T. & Balakotaiah, V. 2000 Modeling and experimental studies of wave evolution on free falling viscous films. Phys. Fluids 12, 22362256.
Nosoko, T. & Miyara, A. 2004 The evolution and subsequent dynamics of waves on a vertically falling liquid film. Phys. Fluids 16, 11181126.
Ooshida, T. 1999 Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number. Phys. Fluids 11, 32473269.
Oron, A., Gottlieb, O. & Novbari, E. 2009 Numerical analysis of a weighted-residual integral boundary-layer model for nonlinear dynamics of falling liquid films. Eur. J. Mech. B/Fluids 28, 136.
Panga, M. K. R. & Balakotaiah, V. 2003 Low-dimensional models for vertically falling viscous films. Phys. Rev. Lett. 90 (15), 154501.
Pradas, M., Kalliadasis, S., Nguyen, P.-K. & Bontozoglou, V. 2013 Bound-state formation in interfacial turbulence: direct numerical simulations and theory. J. Fluid Mech. 716 (R2).
Pumir, A., Manneville, P. & Pomeau, Y. 1983 On solitary waves running down an inclined plane. J. Fluid Mech. 135, 2750.
Ramaswamy, B., Chippada, S. & Joo, S. W. 1996 A full-scale numerical study of interfacial instabilities in thin-film flows. J. Fluid Mech. 325, 163194.
Roberts, A. J. 1996 Low-dimensional models of thin film fluid dynamics. Phys. Lett. A 212, 6371.
Roberts, A. J. & Li, Z.-Q. 2006 An accurate and comprehensive model of thin fluid flows with inertia on curved substrates. J. Fluid Mech. 553, 3373.
Ruyer-Quil, C. & Kalliadasis, S. 2012 Wavy regimes of film flow down a fibre. Phys. Rev. E 85, 046302.
Ruyer-Quil, C. & Manneville, P. 1998 Modeling film flows down inclined planes. Eur. Phys. J. B 6, 277292.
Ruyer-Quil, C. & Manneville, P. 2000 Improved modelling of flows down inclined planes. Eur. Phys. J. B 15, 357369.
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modelling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14, 170183.
Ruyer-Quil, C. & Manneville, P. 2005 On the speed of solitary waves running down a vertical wall. J. Fluid Mech. 531, 181190.
Ruyer-Quil, C., Treveleyan, P., Giorgiutti-Dauphiné, F., Duprat, C. & Kalliadasis, S. 2008 Modelling film flows down a fibre. J. Fluid Mech. 603, 431462.
Salamon, T. R., Armstrong, R. C. & Brown, R. A. 1994 Traveling waves on vertical films: numerical analysis using the finite element method. Phys. Fluids 6, 22022220.
Samanta, A., Goyeau, B. & Ruyer-Quil, C. 2013 A falling film on a porous medium. J. Fluid Mech. 716, 414444.
Samanta, A., Ruyer-Quil, C. & Goyeau, B. 2011 A falling film down a slippery inclined plane. J. Fluid Mech. 684, 353383.
Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech. 562, 183222.
Scheid, B., Ruyer-Quil, C., Thiele, U., Kabov, O. A., Legros, J. C. & Colinet, P. 2005 Validity domain of the Benney equation including the Marangoni effect for closed and open flows. J. Fluid Mech. 527, 303335.
Shkadov, V. Ya. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Izv. Ak. Nauk SSSR, Mekh. Zhidk Gaza 1, 4351; English translation in Fluid Dyn. 2, 29–34, 1970 (Faraday Press, NY).
Shkadov, V. Ya. 1977 Solitary waves in a layer of viscous liquid. Izv. Ak. Nauk SSSR, Mekh. Zhidk Gaza 1, 6366.
Thomas, H. A.1939 The propagation of waves in steep prismatic conduits In Proc. Hydraulics Conf., Univ. of Iowa, pp. 214–229.
Tihon, J., Serifi, K., Argyiriadi, K. & Bontozoglou, V. 2006 Solitary waves on inclined films: their characteristics and the effects on wall shear stress. Exp. Fluids 41, 7989.
Trifonov, Y. Y. 2012 Stability and bifurcations of the wavy film flow down a vertical plate: the results of integral approaches and full-scale computations. Fluid Dyn. Res. 44, 031418.
Whitham, G. B. 1974 Linear and Nonlinear Waves. John Wiley & Sons.
Yu, L.-Q., Wasden, F. K., Dukler, A. E. & Balakotaiah, V. 1995 Nonlinear evolution of waves on falling films at high Reynolds numbers. Phys. Fluids 7, 18861902.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Extreme solitary waves on falling liquid films

  • S. Chakraborty (a1), P.-K. Nguyen (a2), C. Ruyer-Quil (a1) (a3) and V. Bontozoglou (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed