Skip to main content Accessibility help
×
Home

Exact regularized point particle method for multiphase flows in the two-way coupling regime

  • P. Gualtieri (a1), F. Picano (a2), G. Sardina (a3) and C. M. Casciola (a1)

Abstract

Particulate flows have mainly been studied under the simplifying assumption of a one-way coupling regime where the disperse phase does not modify the carrier fluid. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e. by accounting for the inter-phase momentum exchange, which is certainly relevant at increasing mass loading. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. The momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere, where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped point masses, which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between the particles and the fluid which avoids any ‘ad hoc’ assumption. The approach is suited for high-efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space. We will show that hundreds of thousands of particles can be handled at an affordable computational cost, as demonstrated by a preliminary application to a particle-laden turbulent shear flow.

Copyright

Corresponding author

Email address for correspondence: paolo.gualtieri@uniroma1.it

References

Hide All
Ayala, O., Grabowski, W. W. & Wang, L.-P. 2007 A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles. J. Comput. Phys. 225 (1), 5173.
Balachandar, S. 2009 A scaling analysis for point-particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35 (9), 801810.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52, 245268.
Batchelor, G. K. 1976 Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech. 74, 129.
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.
Bec, J., Biferale, L., Cencini, M., Lanotte, A. & Toschi, F. 2010 Intermittency in the velocity distribution of heavy particles in turbulence. J. Fluid Mech. 646, 527536.
Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235263.
Burton, T. M. & Eaton, J. K. 2005 Fully resolved simulations of a particle–turbulence interaction. J. Fluid Mech. 545, 67111.
Cate, A. T., Derksen, J. J., Portela, L. M. & Akken, H. E. A. V. D. 2004 Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233271.
Climent, E. & Magnaudet, J. 2006 Dynamics of a two-dimensional upflowing mixing layer seeded with bubbles: bubble dispersion and effect of two-way coupling. Phys. Fluids 18 (10), 103304.
Crowe, C. T., Sharma, M. P. & Stock, D. E. 1977 The particle-source in cell method for gas droplet flow. J. Fluid Eng. 99, 325332.
Dance, S. L. & Maxey, M. R. 2003 Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comput. Phys. 189, 212238.
Eckhardt, B. & Buehrle, J. 2008 Time-dependent effects in high viscosity fluid dynamics. Eur. Phys. J. 157, 135148.
Elgobashi, S. 2006 An updated classification map of particle-laden turbulent flows. In IUTAM Symposium on Computational Approaches to Multiphase Flow, pp. 310. Springer.
Gao, H., Li, H. & Wang, L.-P. 2013 Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput. Math. Appl. 65 (2), 194210.
Gatignol, R. 1983 The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes-flow. J. Méc. Théor. Appl. 2 (2), 143160.
Gualtieri, P., Casciola, C. M., Benzi, R., Amati, G. & Piva, R. 2002 Scaling laws and intermittency in homogeneous shear flow. Phys. Fluids 14 (2), 583596.
Gualtieri, P., Casciola, C. M., Benzi, R. & Piva, R. 2007 Preservation of statistical properties in large eddy simulation of shear turbulence. J. Fluid Mech. 592, 471494.
Gualtieri, P., Picano, F. & Casciola, C. M. 2009 Anisotropic clustering of inertial particles in homogeneous shear flow. J. Fluid Mech. 629, 2539.
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2013 Clustering and turbulence modulation in particle-laden shear flow. J. Fluid Mech. 715, 134162.
Hasimoto, H. 1959 On the periodic fundamental solutions of Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317328.
Homann, H. & Bec, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651 (1), 8191.
Jenny, P., Roekaerts, D. & Beishuizen, N. 2012 Modeling of turbulent dilute spray combustion. Prog. Energy Combust. Sci. 38 (6), 846887.
Kim, S. & Karilla, S. J. 2005 Microhydrodynamics. Dover.
Lamb, H. 1993 Hydrodynamics. Cambridge University Press.
Liu, D., Keaveny, E. E., Maxey, M. R. & Karniadakis, G. E. 2009 Force-coupling method for flows with ellipsoidal particles. J. Comput. Phys. 228 (10), 35593581.
Lomholt, S. & Maxey, M. R. 2003 Force-coupling method for particulate two phase flow: Stokes flow. J. Comput. Phys. 184, 381405.
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650 (1), 555.
Luo, X., Maxey, M. R. & Karniadakis, G. E. 2009 Smoothed profile method for particulate flows: error analysis and simulations. J. Comput. Phys. 228 (5), 17501769.
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid. Mech. 468, 283315.
Maxey, M. R. & Patel, B. K. 2001 Localized force representations for particles sedimenting in 1341 Stokes flow. Intl J. Multiphase Flow 27, 16031626.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.
Meneguz, E. & Reeks, M. W. 2011 Statistical properties of particle segregation in homogeneous isotropic turbulence. J. Fluid Mech. 686, 338351.
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoi analysis. Phys. Fluids 22 (10), 103304.
Naso, A. & Prosperetti, A. 2010 The interaction between solid particle and turbulent flow. New J. Phys. 12, 120.
Pan, Y. & Banerjee, S. 2001 Numerical simulation of particle interaction with wall turbulence. Phys. Fluids 8 (10), 27332755.
Pasquetti, R., Bwemba, R. & Cousin, L. 2008 A pseudo-penalization method for high Reynolds number unsteady flows. Appl. Numer. Maths 58 (7), 946954.
Pawlowski, L. 2008 The Science and Engineering of Thermal Spray Coatings. Wiley.
Picano, F., Sardina, G. & Casciola, C. M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21, 093305.
Pignatel, F., Nicolas, M. & Guazzelli, E. 2011 A falling cloud of particles at a small but finite Reynolds number. J. Fluid Mech. 671, 3451.
Post, S. L. & Abraham, J. 2002 Modeling the outcome of drop–drop collisions in diesel sprays. Intl J. Multiphase Flow 28 (6), 9971019.
Pumir, A. 1996 Turbulence in homogeneous shear flow. Phys. Fluids 8 (11), 31123127.
Reade, W. C. & Collins, L. R. 2000 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12 (10), 25302540.
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA, TM 81315.
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
Sangani, A. S. & Acrivos, A. 1982 Slow flow through a periodic array of spheres. Intl J. Multiphase Flow 4, 343360.
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.
Subramanian, G. & Koch, D. L. 2008 Evolution of clusters of sedimenting low-Reynolds-number particles with Oseen interactions. J. Fluid Mech. 603 (1), 63100.
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.
Wang, L.-P., Ayala, O. & Grabowski, W. W. 2005a Improved formulations of the superposition method. J. Atmos. Sci. 62 (4), 12551266.
Wang, L.-P., Ayala, O., Kasprzak, S. E. & Grabowski, W. W. 2005b Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere. J. Atmos. Sci. 62 (7), 24332450.
Yakhot, V. 2003 A simple model for self-sustained oscillations in homogeneous shear flow. Phys. Fluids 15 (2), L17L20.
Yeo, K., Dong, S., Climent, E. & Maxey, M. R. 2010 Modulation of homogeneous turbulence seeded with finite size bubbles or particles. Intl J. Multiphase Flow 36 (3), 221233.
Zapryanov, Z. & Tabakova, S. 1998 Dynamics of Bubbles, Drops and Rigid Particles, Vol. 50. Springer.
Zhang, Z. & Prosperetti, A. 2005 A second order method for three dimensional particle simulation. J. Comput. Phys. 210, 292324.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Exact regularized point particle method for multiphase flows in the two-way coupling regime

  • P. Gualtieri (a1), F. Picano (a2), G. Sardina (a3) and C. M. Casciola (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.