Skip to main content Accessibility help
×
Home

Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime

  • F. Battista (a1), J.-P. Mollicone (a2), P. Gualtieri (a3), R. Messina (a3) and C. M. Casciola (a3)...

Abstract

The exact regularised point particle (ERPP) method is extended to treat the inter-phase momentum coupling between particles and fluid in the presence of walls by accounting for vorticity generation due to particles close to solid boundaries. The ERPP method overcomes the limitations of other methods by allowing the simulation of an extensive parameter space (Stokes number, mass loading, particle-to-fluid density ratio and Reynolds number) and of particle spatial distributions that are uneven (few particles per computational cell). The enhanced ERPP method is explained in detail and validated by considering the global impulse balance. In conditions when particles are located close to the wall, a common scenario in wall-bounded turbulent flows, the main contribution to the total impulse arises from the particle-induced vorticity at the solid boundary. The method is applied to direct numerical simulations of particle-laden turbulent pipe flow in the two-way coupling regime to address turbulence modulation. The effects of the mass loading, the Stokes number and the particle-to-fluid density ratio are investigated. The drag is either unaltered or increased by the particles with respect to the uncoupled case. No drag reduction is found in the parameter space considered. The momentum stress budget, which includes an extra stress contribution by the particles, provides the rationale behind the drag behaviour. The extra stress produces a momentum flux towards the wall that strongly modifies the viscous stress, the culprit of drag at solid boundaries.

Copyright

Corresponding author

Email address for correspondence: francesco.battista@uniroma1.it

References

Hide All
Akiki, G., Jackson, T. L. & Balachandar, S. 2017 Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 813, 882928.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Battista, F., Gualtieri, P., Mollicone, J.-P. & Casciola, C. M. 2018 Application of the exact regularized point particle method (erpp) to particle laden turbulent shear flows in the two-way coupling regime. Intl J. Multiphase Flow 101, 113124.
Battista, F., Picano, F. & Casciola, C. M. 2014 Turbulent mixing of a slightly supercritical van der waals fluid at low-mach number. Phys. Fluids 26 (5), 055101.
Battista, F., Picano, F., Troiani, G. & Casciola, C. M. 2011 Intermittent features of inertial particle distributions in turbulent premixed flames. Phys. Fluids 23 (12), 123304.
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98 (8), 084502.
Benfatto, G. & Pulvirenti, M. 1984 Generation of vorticity near the boundary in planar Navier–Stokes flows. Commun. Math. Phys. 96 (1), 5995.
Bijlard, M. J., Oliemans, R. V. A., Portela, L. M. & Ooms, G. 2010 Direct numerical simulation analysis of local flow topology in a particle-laden turbulent channel flow. J. Fluid Mech. 653, 3556.
Blake, J. R. & Chwang, A. T. 1974 Fundamental singularities of viscous flow. J. Engng Maths 8 (1), 2329.
Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235263.
Borée, J. & Caraman, N. 2005 Dilute bidispersed tube flow: role of interclass collisions at increased loadings. Phys. Fluids 17 (5), 055108.
Breugem, W.-P. 2012 A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231 (13), 44694498.
Buhre, B. J. P., Elliott, L. K., Sheng, C. D., Gupta, R. P. & Wall, T. F. 2005 Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. 31 (4), 283307.
Capecelatro, J. & Desjardins, O. 2013 An euler–lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32 (3), 565568.
Caraman, N., Borée, J. & Simonin, O. 2003 Effect of collisions on the dispersed phase fluctuation in a dilute tube flow: experimental and theoretical analysis. Phys. Fluids 15 (12), 36023612.
Casciola, C. M., Piva, R. & Bassanini, P. 1996 Vorticity generation on a flat surface in 3d flows. J. Comput. Phys. 129 (2), 345356.
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22 (104), 745762.
Costa, P., Picano, F., Brandt, L. & Breugem, W.-P. 2018 Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions. J. Fluid Mech. 843, 450478.
Costantini, R., Mollicone, J.-P. & Battista, F. 2018 Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow. Phys. Fluids 30 (2), 025102.
Crowe, C. T., Sharma, M. P. & Stock, D. E. 1977 The particle-source-in cell (PSI-CELL) model for gas-droplet flows. Trans. ASME J. Fluids Engng 99 (2), 325332.
De Marchis, M. & Milici, B. 2016 Turbulence modulation by micro-particles in smooth and rough channels. Phys. Fluids 28 (11), 115101.
Dritselis, C. D. & Vlachos, N. S. 2008 Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20 (5), 055103.
Dritselis, C. D. & Vlachos, N. S. 2011 Numerical investigation of momentum exchange between particles and coherent structures in low re turbulent channel flow. Phys. Fluids 23 (2), 025103.
Eidelman, A., Elperin, T., Kleeorin, N., Hazak, G., Rogachevskii, I., Sadot, O. & Sapir-Katiraie, I. 2009 Mixing at the external boundary of a submerged turbulent jet. Phys. Rev. E 79 (2), 026311.
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.
Elghobashi, S. 2019 Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51, 217244.
Fornari, W., Brandt, L., Chaudhuri, P., Lopez, C. U., Mitra, D. & Picano, F. 2016a Rheology of confined non-brownian suspensions. Phys. Rev. Lett. 116 (1), 018301.
Fornari, W., Picano, F. & Brandt, L. 2016b Sedimentation of finite-size spheres in quiescent and turbulent environments. J. Fluid Mech. 788, 640669.
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.
Gatignol, R. 1983 The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes-flow. J. de Mécanique théorique et appliquée 2 (2), 143160.
Goto, S. & Vassilicos, J. C. 2006 Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence. Phys. Fluids 18 (11), 115103.
Gualtieri, P., Battista, F. & Casciola, C. M. 2017 Turbulence modulation in heavy-loaded suspensions of tiny particles. Phys. Rev. Fluids 2 (3), 034304.
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2013 Clustering and turbulence modulation in particle-laden shear flow. J. Fluid Mech. 715, 134162.
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2015 Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 773, 520561.
Hadinoto, K., Jones, E. N., Yurteri, C. & Curtis, J. S. 2005 Reynolds number dependence of gas-phase turbulence in gas–particle flows. Intl J. Multiphase Flow 31 (4), 416434.
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer Science & Business Media.
der Hoef, M. A. V., Annald, M. V. S., Deen, N. G. & Kuipers, J. A. M. 2008 Numerical simulations of dense gas–solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 4770.
Horwitz, J. A. K. & Mani, A. 2016 Accurate calculation of Stokes drag for point–particle tracking in two-way coupled flows. J. Comput. Phys. 318, 85109.
Horwitz, J. & Mani, A. 2018 Correction scheme for point-particle models applied to a nonlinear drag law in simulations of particle-fluid interaction. Intl J. Multiphase Flow 101, 7484.
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105 (4), 044505.
Innocenti, A., Marchioli, C. & Chibbaro, S. 2016 Lagrangian filtered density function for les-based stochastic modelling of turbulent particle-laden flows. Phys. Fluids 28 (11), 115106.
Ireland, P. J. & Desjardins, O. 2017 Improving particle drag predictions in euler–lagrange simulations with two-way coupling. J. Comput. Phys. 338, 405430.
Jacob, B., Casciola, C. M., Talamelli, A. & Alfredsson, P. H. 2008 Scaling of mixed structure functions in turbulent boundary layers. Phys. Fluids 20 (4), 045101.
Jenny, P., Roekaerts, D. & Beishuizen, N. 2012 Modeling of turbulent dilute spray combustion. Prog. Energy Combust. Sci. 38 (6), 846887.
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995a Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7 (5), 10951106.
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995b Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles. Phys. Fluids 7 (5), 11071121.
Kaftori, D., Hetsroni, G. & Banerjee, S. 1998 The effect of particles on wall turbulence. Intl J. Multiphase Flow 24 (3), 359386.
Kostinski, A. B. & Shaw, R. A. 2001 Scale-dependent droplet clustering in turbulent clouds. J. Fluid Mech. 434, 389398.
Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.
Lau, T. C. W. & Nathan, G. J. 2016 The effect of Stokes number on particle velocity and concentration distributions in a well-characterised, turbulent, co-flowing two-phase jet. J. Fluid Mech. 809, 72110.
Lee, J. & Lee, C. 2015 Modification of particle-laden near-wall turbulence: effect of Stokes number. Phys. Fluids 27 (2), 023303.
Li, D., Luo, K. & Fan, J. 2016a Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. J. Fluid Mech. 802, 359394.
Li, D., Wei, A., Luo, K. & Fan, J. 2016b Direct numerical simulation of a particle-laden flow in a flat plate boundary layer. Intl J. Multiphase Flow 79, 124143.
Li, J., Wang, H., Liu, Z., Chen, S. & Zheng, C. 2012 An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 53 (5), 13851403.
Li, Y., McLaughlin, J. B., Kontomaris, K. & Portela, L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13 (10), 29572967.
Ljus, C., Johansson, B. & Almstedt, A.-E. 2002 Turbulence modification by particles in a horizontal pipe flow. Intl J. Multiphase Flow 28 (7), 10751090.
Marchioli, C. 2017 Large-eddy simulation of turbulent dispersed flows: a review of modelling approaches. Acta Mechanica 228 (3), 741771.
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R1.
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 2437.
Meyer, D. W. 2012 Modelling of turbulence modulation in particle-or droplet-laden flows. J. Fluid Mech. 706, 251273.
Mollicone, J.-P., Battista, F., Gualtieri, P. & Casciola, C. M. 2018 Turbulence dynamics in separated flows: the generalised Kolmogorov equation for inhomogeneous anisotropic conditions. J. Fluid Mech. 841, 10121039.
Morton, B. R. 1984 The generation and decay of vorticity. Geophys. Astrophys. Fluid Dyn. 28 (3-4), 277308.
Pan, Y. & Banerjee, S. 1997 Numerical investigation of the effects of large particles on wall-turbulence. Phys. Fluids 9 (12), 37863807.
Peirano, E., Chibbaro, S., Pozorski, J. & Minier, J.-P. 2006 Mean-field/pdf numerical approach for polydispersed turbulent two-phase flows. Prog. Energy Combust. Sci. 32 (3), 315371.
Picano, F., Battista, F., Troiani, G. & Casciola, C. M. 2011 Dynamics of piv seeding particles in turbulent premixed flames. Exp. Fluids 50 (1), 7588.
Picano, F., Sardina, G. & Casciola, C. M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21 (9), 093305.
Picciotto, M., Giusti, A., Marchioli, C. & Soldati, A. 2006 Turbulence modulation by micro-particles in boundary layers. In IUTAM Symposium on Computational Approaches to Multiphase Flow, pp. 5362. Springer.
Piva, R. & Morino, L. 1987 Vector green’s function method for unsteady Navier–Stokes equations. Meccanica 22 (2), 7685.
Pope, S. B. 2001 Turbulent Flows. IOP Publishing.
Post, S. L. & Abraham, J. 2002 Modeling the outcome of drop–drop collisions in diesel sprays. Intl J. Multiphase Flow 28 (6), 9971019.
Rani, S. L., Winkler, C. M. & Vanka, S. P. 2004 Numerical simulations of turbulence modulation by dense particles in a fully developed pipe flow. Powder Technol. 141 (1), 8099.
Rannacher, R. 1992 On chorin’s projection method for the incompressible Navier–Stokes equations. In The Navier–Stokes Equations II—Theory and Numerical Methods, pp. 167183. Springer.
Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aero. Sci. 14 (6), 729739.
Richter, D. H. & Sullivan, P. P. 2014 Modification of near-wall coherent structures by inertial particles. Phys. Fluids 26 (10), 103304.
Righetti, M. & Romano, G. P. 2004 Particle–fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505, 93121.
Sardina, G., Picano, F., Schlatter, P., Brandt, L. & Casciola, C. M. 2011 Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow. Flow Turbul. Combust. 86 (3-4), 519532.
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C. M. 2012a Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.
Sardina, G., Schlatter, P., Picano, F., Casciola, C. M., Brandt, L. & Henningson, D. S. 2012b Self-similar transport of inertial particles in a turbulent boundary layer. J. Fluid Mech. 706, 584596.
Soldati, A. & Marchioli, C. 2009 Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Intl J. Multiphase Flow 35 (9), 827839.
Stakgold, I. 2000 Boundary Value Problems of Mathematical Physics, vol. 2. SIAM.
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.
Tsuji, Y., Morikawa, Y. & Shiomi, H. 1984 LDV measurements of an air-solid two-phase flow in a vertical pipe. J. Fluid Mech. 139, 417434.
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.
Vreman, A. W. 2007 Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 584, 235279.
Vreman, A. W. 2015 Turbulence attenuation in particle-laden flow in smooth and rough channels. J. Fluid Mech. 773, 103.
Wang, L. P., Rosa, B., Gao, H., He, G. & Jin, G. 2009 Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond. Intl J. Multiphase Flow 35 (9), 854867.
Wu, Y., Wang, H., Liu, Z., Li, J., Zhang, L. & Zheng, C. 2006 Experimental investigation on turbulence modification in a horizontal channel flow at relatively low mass loading. Acta Mechanica Sin. 22 (2), 99108.
Yamamoto, Y. & Okawa, T. 2010 Numerical study of particle concentration effect on deposition characteristics in turbulent pipe flows. J. Nuclear Sci. Technol. 47 (10), 945952.
Young, J. & Leeming, A. 1997 A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340, 129159.
Zhao, L. H., Andersson, H. I. & Gillissen, J. J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22 (8), 081702.
Zhao, L., Andersson, H. I. & Gillissen, J. J. J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 32.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime

  • F. Battista (a1), J.-P. Mollicone (a2), P. Gualtieri (a3), R. Messina (a3) and C. M. Casciola (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.