Skip to main content Accessibility help
×
Home

The evolution of the initial flow structures of a highly under-expanded circular jet

  • Huan-Hao Zhang (a1), Nadine Aubry (a2), Zhi-Hua Chen (a1), Wei-Tao Wu (a3) and Sha Sha (a4)...

Abstract

The three-dimensional flow characteristics of the compressible vortex ring generated by under-expanded circular jets with two typical pressure ratios, i.e.  $n=1.4$ (moderate) and 4.0 (high), are investigated numerically with the use of large-eddy simulations. Our results illustrate that these two pressure ratios correspond to different shock structures (shock cell and Mach disc, respectively) within the jet. These two typical types of flow structures and characteristics are discussed and validated with experiments, and the different generation mechanisms of the secondary vortex rings are compared. Moreover, detailed information about the evolution of the secondary vortex ring, primary vortex ring and turbulence transition features, including the radial and azimuthal modes, is investigated. The geometric features and mixing effects of the jets are also explored.

Copyright

Corresponding author

Email addresses for correspondence: chenzh@njust.edu.cn, weitaowwtw@njust.edu.cn

References

Hide All
Archer, P. J., Thomas, T. G. & Coleman, G. N. 2008 Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime. J. Fluid Mech. 598, 201226.
Arakeri, J. H., Das, D., Krothapalli, A. & Lourenco, L. 2004 Vortex ring formation at the open end of a shock tube: a particle image velocimetry study. Phys. Fluids 16, 10081019.
Berger, M. & Colella, P. 1989 Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 6484.
Brouillette, M., Tardif, J. & Gauthier, E. 1995 Experimental study of shock-generated vortex rings. In Shock Waves @ Marseille IV, pp. 361366. Springer.
Brouillette, M. & Hebert, C. 1997 Propagation and interaction of shock-generated vortices. Fluid Dyn. Res. 21, 159169.
Colonius, T., Lele, S. K. & Moin, P. 1994 Scattering of sound waves by a compressible vortex: numerical simulations and analytical solutions. J. Fluid Mech. 260, 271298.
Deiterding, R., Cirak, F., Mauch, S. P. & Meiron, D. I. 2007 A virtual test facility for simulating detonation- and shock-induced deformation and fracture of thin flexible shells. Intl J. Multiscale Comput. Engng 5, 4769.
Donaldson, C. D. & Snedeker, R. S. 1971 A study of free jet impingement. Part 1. Mean properties of free and impinging jets. J. Fluid Mech. 45, 281319.
Hamzehloo, A. & Aleiferis, P. G. 2016 Gas dynamics and flow characteristics of highly turbulent under-expanded hydrogen and methane jets under various nozzle pressure ratios and ambient pressures. Intl J. Hydrogen Energy 41, 65446566.
Hillier, R. 1991 Computation of shock wave diffraction at a ninety degrees convex edge. Shock Waves 1, 8998.
Hill, D. J. & Pullin, D. I. 2004 Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. J. Comput. Phys. 194, 435454.
Hill, D. J., Pantano, C. & Pullin, D. I. 2006 Large-eddy simulation and multiscale modeling of a Richtmyer–Meshkov instability with re-shock. J. Fluid Mech. 557, 2961.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proc. 1988 Summer Program of the Center for Turbulence Research, pp. 193207.
Ishii, R., Fujimoto, H., Hatta, N. & Umeda, Y. 1999 Experimental and numerical analysis of circular pulse jets. J. Fluid Mech. 392, 129153.
Kitajima, S., Iwamoto, J. & Tamura, E. 2009 A study on the behavior of shock wave and vortex ring discharged from a pipe. In 10th International Conference on Fluid Control, Measurements, and Visualization, August 17–21, Moscow, Russia.
Kosovic, B., Pullin, D. I. & Samtaney, R. 2002 Subgrid-scale modeling for large-eddy simulations of compressible turbulence. Phys. Fluids 14, 15111522.
Li, H. Z., Jiang, X. H., Wang, Y. & Guo, Z. Q. 2015 Intermediate Ballistics. Beijing Institute of Technology Press.
Lombardini, M., Hill, D. J., Pullin, D. I. & Meiron, D. I. 2011 Atwood ratio dependence of Richtmyer–Meshkov flows under reshock conditions using large-eddy simulations. J. Fluid Mech. 670, 439480.
Lundgren, T. S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 21932203.
Maeno, K., Kaneta, T., Morioka, T. & Honma, H. 2005 Pseudo-schlieren CT measurement of three-dimensional flow phenomena on shock waves and vortices discharged from open ends. Shock Waves 14, 239249.
Mariani, R., Quinn, M. K. & Kontis, K. 2013 A note on the generation of a compressible vortex rings using helium as driver gas. Proc. Inst. Mech. Engrs Part G 227, 16371645.
Matsuda, T., Vuorinen, V., Yu, J., Tirunagari, S., Kaario, O., Larmi, M., Duwig, C. & Boersma, B. J. 2013 Large-eddy simulation of highly under-expanded transient gas jets. Phys. Fluids 25, 016101.
Misra, A. & Pullin, D. I. 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9, 24432454.
Minota, T. 1998 Shock/vortex interaction in a flow field behind a shock wave emitted from a shock-tube. In Proceedings of the 2nd International Workshop on Shock Wave/Vortex Interaction, pp. 149160. International Shock Wave Institute.
Murugan, T. & Das, D. 2010 Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring. Exp. Fluids 49, 12471261.
Murugan, T., De, S., Dora, C. L., Das, D. & Prem Kumar, P. 2013 A study of the counter rotating vortex rings interacting with the primary vortex ring in shock tube generated flows. Fluid Dyn. Res. 45, 025506.
Pantano, C., Deiterding, R., Hill, D. J. & Pullin, D. I. 2007 A low numerical dissipation patch based adaptive mesh refinement method for large-eddy simulation of compressible flows. J. Comput. Phys. 221, 6387.
Pullin, D. I. 2000 A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids 12, 23112319.
Ran, H. & Colonius, T. 2009 Numerical simulation of the sound radiated from a turbulent vortex ring. Aeroacoustics 8, 317336.
Ran, H.2004 Numerical study of the dynamics and sound generation of a turbulent vortex ring. PhD thesis, California Institute of Technology, Pasadena, CA.
Saffman, P. 1978 The number of waves on unstable vortex rings. J. Fluid Mech. 84, 625639.
Widnall, S. & Tsai, C. 1977 The instability of the thin vortex rings of constant vorticity. Phil. Trans. R. Soc. Lond. A 287, 273305.
Zare-Behtash, H., Kontis, K. & Gongora-Orozco, N. 2008a Experimental investigation of compressible vortex loops. Phys. Fluids 20, 126105.
Zare-Behtash, H., Kontis, K. & Takayama, K.2008b Compressible vortex loops studies in a shock tube with various exit geometries. AIAA Paper 2008-362.
Zare-Behtash, H., Kontis, K., Gongora-Orozco, N. & Takayama, H. 2009a Compressible vortex loops: effect of nozzle geometry. Intl J. Heat Fluid Flow 30, 561576.
Zare-Behtash, H., Gongora-Orozco, N. & Kontis, K. 2009b Global visualization and quantification of compressible vortex loops. J. Vis. 12, 233240.
Zare-Behtash, H., Kontis, K., Gongora-Orozco, N. & Takayama, K. 2010 Shock wave-induced vortex loops emanating from nozzles with singular corners. Exp. Fluids 49, 10051019.
Zhang, H. H., Chen, Z. H., Jiang, X. H. & Li, B. M. 2011 Numerical investigations on the thrust augmentation mechanisms of ejectors driven by pulse detonation engines. Combust. Sci. Technol. 183, 10691082.
Zhang, H. H., Chen, Z. H., Jiang, X. H. & Li, H. Z. 2013 Investigations on the exterior flow fields and the efficiency of the muzzle brake. J. Mech. Sci. Technol. 27, 95101.
Zhang, H. H., Chen, Z. H., Li, B. M. & Jiang, X. H. 2014 The secondary vortex rings of a supersonic under-expanded circular jet with low pressure ratio. Eur. J. Mech. (B/Fluids) 46, 172180.
Zhang, H. H., Chen, Z. H., Jiang, X. H. & Huang, Z. G. 2015 The starting flow structures and evolution of a supersonic planar jet. Comput. Fluids 114, 98109.
Zhang, H. H., Chen, Z. H., Guo, Z. Q. & Sun, X. H. 2017 Characteristic behavior of shock pattern and primary vortex loop of a supersonic square jet. Intl J. Heat Mass Transfer 115, 347363.
Zhang, H. H., Chen, Z. H., Guo, Z. Q., Zheng, C. & Xue, D. W. 2018 Numerical investigation on the three-dimensional flow characteristics of unsteady subsonic elliptic jet. Comput. Fluids 160, 7892.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

The evolution of the initial flow structures of a highly under-expanded circular jet

  • Huan-Hao Zhang (a1), Nadine Aubry (a2), Zhi-Hua Chen (a1), Wei-Tao Wu (a3) and Sha Sha (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed