Skip to main content Accessibility help
×
×
Home

Evolution of solitary waves and undular bores in shallow-water flows over a gradual slope with bottom friction

  • G. A. EL (a1), R. H. J. GRIMSHAW (a1) and A. M. KAMCHATNOV (a2)

Abstract

This paper considers the propagation of shallow-water solitary and nonlinear periodic waves over a gradual slope with bottom friction in the framework of a variable-coefficient Korteweg–de Vries equation. We use the Whitham averaging method, using a recent development of this theory for perturbed integrable equations. This general approach enables us not only to improve known results on the adiabatic evolution of isolated solitary waves and periodic wave trains in the presence of variable topography and bottom friction, modelled by the Chezy law, but also, importantly, to study the effects of these factors on the propagation of undular bores, which are essentially unsteady in the system under consideration. In particular, it is shown that the combined action of variable topography and bottom friction generally imposes certain global restrictions on the undular bore propagation so that the evolution of the leading solitary wave can be substantially different from that of an isolated solitary wave with the same initial amplitude. This non-local effect is due to nonlinear wave interactions within the undular bore and can lead to an additional solitary wave amplitude growth, which cannot be predicted in the framework of the traditional adiabatic approach to the propagation of solitary waves in slowly varying media.

Copyright

References

Hide All
Apel, J. P. 2003 A new analytical model for internal solitons in the ocean. J. Phys. Oceanogr. 33, 2247.
Avilov, V. V., Krichever, I. M. & Novikov, S. P. 1987 Evolution of Whitham zone in the theory of Korteweg-de Vries. Sov. Phys. Dokl. 32, 564.
Benjamin, T. B. & Lighthill, M. J. 1954 On cnoidal waves and bores. Proc. R. Soc. Lond. A 224, 448
Boussinesq, J. 1872 Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55.
Dubrovin, B. A. & Novikov, S. P. 1989 Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Russian Math. Surveys 44, 35.
El, G. A. 2005 Resolution of a shock in hyperbolic systems modified by weak dispersion. Chaos 15, 037103.
Fornberg, D. & Whitham, G. B. 1978 A numerical and theoretical study of certain nonlinear wave phcnomena. Phil Trans. R. Soc. Lond. A 289, 373.
Gradshtein, I. S. & Ryzhik, I. M. 1980 Table of Integrals, Series, and Products. Academic.
Grimshaw, R. 1979 Slowly varying solitary waves. I Korteweg-de Vries equation. Proc. Soc. Lond. A 368, 359.
Grimshaw, R. 1981 Evolution equations for long nonlinear internal waves in stratified shear flows. Stud. Appl. Maths 65, 159.
Grimshaw, R. 2007 Internal solitary waves in a variable medium. Gesellschaft Angew. Math. 30, 96109.
Grimshaw, R. Pelinovsky, E. & Talipova, T. 2003 Damping of large-amplitude solitary waves. Wave Motion 37, 351.
Grimshaw, R. H. J. & Smyth, N. F. 1986 Resonant flow of a stratified fluid over topography. J. Fluid Mech. 169, 429.
Gurevich, A. V., Krylov, A. L. & El, G. A. 1992 Evolution of a Riemann wave in dispersive hydrodynamics. Sov. Phys. JETP 74, 957.
Gurevich, A. V., Krylov, A. L. & Mazur, N. G. 1989 Quasi-simple waves in Korteweg-de Fries hydrodynamics. Zh. Eksp. Teor. Fiz. 95, 1674.
Gurevich, A. V. & Pitaevskii, L. P. 1974 Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291.
Gurevich, A. V. & Pitaevskii, L. P. 1987 Averaged description of waves in the Korteweg-de Vries-Burgers equation. Sov. Phys. JETP 66, 490.
Gurevich, A. V. & Pitaevskii, L. P. 1991 Nonlinear waves with dispersion and non-local damping. Sov. Phys. JETP 72, 821.
Johnson, R. S. 1970 A non-linear equation incorporating damping and dispersion. J. Fluid Mech. 42, 49.
Johnson, R. S. 1973 a On the development of a solitary wave moving over an uneven bottom. Proc. Camb. Phil. Soc. 73, 183.
Johnson, R. S. 1973 b On an asymptotic solution of the Korteweg-de Vries equation with slowly varying coefficients. J. Fluid Mech. 60, 813.
Johnson, R. S. 1997 A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press.
Kamchatnov, A. M. 2000 Nonlinear Periodic Waves and Their Modulations – An Introductory Course. World Scientific.
Kamchatnov, A. M. 2004 On Whitham theory for perturbed integrable equations. Physica D 188, 247.
Lax, P. D., Levermore, C. D. & Venakides, S. 1994 The generation and propagation of oscillations in dispersive initial value problems and their limiting behavior. Important Developments in Soliton Theory (ed. Focas, A. S. & Zakharov, V. E.), p. 205. Springer.
Miles, J. W. 1979 On the Korteweg-de Vries equation for a gradually varying channel. J. Fluid Mech 91, 181.
Miles, J. W. 1983 a Solitary wave evolution over a gradual slope with turbulent friction. J. Phys. Oceanogr. 13, 551.
Miles, J. W. 1983 b Wave evolution over a gradual slope with turbulent friction. J. Fluid Mech. 133, 207.
Myint, S. & Grimshaw, R. H. J. 1995 The modulation of nonlinear periodic wavetrains by dissipative terms in the Korteweg-de Vries equation. Wave Motion 22, 215.
Ostrovsky, L. A. & Pelinovsky, E. N. 1970 Wave transformation on the surface of a fluid of variable depth. Akad. Nauk SSSR, Izv. Atmos. Ocean Phys. 6, 552.
Ostrovsky, L. A. & Pelinovsky, E. N. 1975 Refraction of nonlinear sea waves in a coastal zone. Akad. Nauk SSSR, Izv. Atmos. Ocean Phys. 11, 37.
Smyth, N. F. 1987 Modulation theory for resonant flow over topography. Proc. R. Soc. Lond. A 409, 79.
Whitham, G. B. 1965 Non-linear dispersive waves. Proc. R. Soc. Lond. A 283, 238.
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley–Interscience.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed