Skip to main content Accessibility help

Evolution of material surfaces in the temporal transition in channel flow

  • Yaomin Zhao (a1), Yue Yang (a1) (a2) and Shiyi Chen (a1) (a2) (a3)


We report a Lagrangian study on the evolution of material surfaces in the Klebanoff-type temporal transitional channel flow. Based on the Eulerian velocity field from the direct numerical simulation, a backward-particle-tracking method is applied to solve the transport equation of the Lagrangian scalar field, and then the isosurfaces of the Lagrangian field can be extracted as material surfaces in the evolution. Three critical issues for Lagrangian investigations on the evolution of coherent structures using material surfaces are addressed. First, the initial scalar field is uniquely determined based on the proposed criteria, so that the initial material surfaces can be approximated as vortex surfaces, and remain invariant in the initial laminar state. Second, the evolution of typical material surfaces initially from different wall distances is presented, and then the influential material surface with the maximum deformation is identified. Large vorticity variations with the maximum curvature growth of vortex lines are also observed on this surface. Moreover, crucial events in the transition can be characterized in a Lagrangian approach by conditional statistics on the material surfaces. Finally, the influential material surface, which is initially a vortex surface, is demonstrated as a surrogate of the vortex surface before significant topological changes of vortical structures. Therefore, this material surface can be used to elucidate the continuous temporal evolution of vortical structures in transitional wall-bounded flows in a Lagrangian perspective. The evolution of the influential material surface is divided into three stages: the formation of a triangular bulge from an initially disturbed streamwise–spanwise sheet, rolling up of the vortex sheet near the bulge ridges with the vorticity intensification and the generation and evolution of signature hairpin-like structures with self-induced dynamics of vortex filaments.


Corresponding author

Email address for correspondence:


Hide All
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.
Bake, S., Fernholz, H. H. & Kachanov, Y. S. 2000 Resemblance of K- and N-regimes of boundary-layer transition at late stages. Eur. J. Mech. (B/Fluids) 19, 122.
Bake, S., Meyer, D. G. W. & Rist, U. 2002 Turbulence mechanism in Klebanoff transition: a quantitative comparison of experiment and direct numerical simulation. J. Fluid Mech. 459, 217243.
Batchelor, G. K. 1967 Introduction to Fluid Dynamics. Cambridge University Press.
Bernard, P. S. 2011 The hairpin vortex illusion. J. Phys.: Conf. Ser. 318, 062004.
Bernard, P. S. 2013 Vortex dynamics in transitional and turbulent boundary layers. AIAA J. 51, 18281842.
Blazevski, D. & Haller, G. 2014 Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Physica D 273, 4662.
Borodulin, V. I., Gaponenko, V. R., Kachanov, Y. S., Meyer, D. G. W., Rist, U., Lian, Q. X. & Lee, C. B. 2002a Late-stage transitional boundary-layer structures. Direct numerical simulation and experiment. Theor. Comput. Fluid Dyn. 15, 317337.
Borodulin, V. I. & Kachanov, Y. S. 1988 Role of the mechanism of local secondary instability in K-breakdown of boundary layer. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk 18, 6577.
Borodulin, V. I., Kachanov, Y. S. & Koptsev, D. B. 2002b Experimental study of resonant interactions of instability waves in a self-similar boundary layer with an adverse pressure gradient: I. Tuned resonances. J. Turbul. 3, 138.
Borodulin, V. I., Kachanov, Y. S. & Roschektayev, A. P. 2006 Turbulence production in an APG-boundary-layer transition induced by randomized perturbations. J. Turbul. 7, 130.
Borodulin, V. I., Kachanov, Y. S. & Roschektayev, A. P. 2007 The deterministic wall turbulence is possible. In Advances in Turbulence XI. Proceedings of 11th EUROMECH European Turbulence Conference (ed. Palma, J. M. L. M. & Lopes, A. S.), pp. 176178. Springer.
Brethouwer, G., Hunt, J. C. R. & Nieuwstadt, F. T. M. 2003 Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech. 474, 193225.
Canuto, C., Hussaini, M. Y., Quateroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.
Carino, E. R. & Brodkey, R. S. 1969 A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37, 130.
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8, 21722179.
Fasel, H., Thumm, A. & Bestek, H. 1993 Direct numerical simulation of transition in supersonic boundary layers: oblique breakdown. In Transition and Turbulent Compressible Flows (ed. Kral, L. D. & Zang, T. A.), pp. 7792. ASME.
Gilbert, N. & Kleiser, L. 1990 Near-wall phenomena in transition to turbulence. In Near Wall Turbulence (ed. Kline, S. J. & Afgan, N. H.), pp. 727. Hemisphere.
Green, M. A., Rowley, C. W. & Haller, G. 2007 Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111120.
Guo, H., Borodulin, V. I., Kachanov, Y. S., Pan, C., Wang, J. J., Lian, Q. X. & Wang, S. F. 2010 Nature of sweep and ejection events in transitional and turbulent boundary layers. J. Turbul. 11, 151.
Haller, G. 2001 Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248277.
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.
Hama, F. R. 1960 Boundary-layer transition induced by a vibrating ribbon on a flat plate. In Proc. Heat Transfer and Fluid Mech. Inst. (ed. Roshko, A., Sturtevant, B. & Bartz, D. R.), pp. 92105. Standford University Press.
Hama, F. R. & Nutant, J. 1963 Detailed flow-field observations in the transition process in a thick boundary layer. In Proc. Heat Transfer and Fluid Mech. Inst., pp. 7793. Standford University Press.
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.
Herbert, T.1984 Analysis of the subharmonic route to transition in boundary-layers. AIAA Paper 84-0009.
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, 2, vol. 1, pp. 193208. Center for Turbulence Research Report CTR-S88.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Kachanov, Y. S. 1994 Physical mechanism of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.
Kachanov, Y. S., Kozlov, V. V. & Levchenko, V. Y. 1977 Nonlinear development of a wave in a boundary layer. Fluid Dyn. 12, 383390.
Kim, J. & Moin, P. 1986 The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields. J. Fluid Mech. 162, 339363.
Kim, J., Moin, P. & Moser, R. D. 1987 Turbulent statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 134.
Kleiser, L. & Laurien, E. 1985 Three-dimensional numerical simulation of laminar–turbulent transition and its control by periodic disturbances. In Laminar–Turbulent Transition (ed. Kozlov, V. V.), pp. 2937. Springer.
Kleiser, L. & Zang, T. A. 1991 Numerical simulation of transition in wall-bounded shear flows. Annu. Rev. Fluid Mech. 23, 495537.
Lee, C. B. & Li, R. 2007 Dominant structure for turbulent production in a transitional boundary layer. J. Turbul. 8, 134.
Lee, C. B. & Wu, J. Z. 2008 Transition in wall-bounded flows. Appl. Mech. Rev. 61, 030802.
LeHew, J. A., Guala, M. & MeKeon, B. J. 2013 Time-resolved measurements of coherent structures in the turbulent boundary layer. Exp. Fluids 54, 1508.
Lighthill, M. J. 1963 Introduction: boundary layer theory. In Laminar Boundary Layer Theory (ed. Rosenhead, L.), pp. 46113. Oxford University Press.
Lozano-Durán, A. & Jiménez, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.
Malik, M. R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86, 376413.
Moin, P. & Kim, J. 1985 The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155, 441464.
Moin, P., Leonard, A. & Kim, J. 1986 Evolution of a curved vortex filament into a vortex ring. Phys. Fluids 29, 955.
Morkovin, M. V. 1984 Bypass transition to turbulence and research desiderta. In Transition in Turbines, NASA Conf. Pub. 2386, pp. 162204.
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Pullin, D. I. & Yang, Y. 2014 Whither vortex tubes? Fluid Dyn. Res. 46, 061418.
Rist, U. & Fasel, H. 1995 Direct numerical-simulation of controlled transition in a flat-plate boundary-layer. J. Fluid Mech. 298, 211248.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.
Sandham, N. D. & Kleiser, L. 1992 The late stages of transition to turbulence in channel flow. J. Fluid Mech. 245, 319348.
Sayadi, T., Hamman, C. W. & Moin, P. 2013 Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724, 480509.
Schlatter, P., Li, Q., Örlü, R., Hussain, F. & Henningson, D. S. 2014 On the near-wall vortical structures at moderate Reynolds numbers. Eur. J. Mech. (B/Fluids) 48, 7593.
Schlatter, P., Stolz, S. & Kleiser, L. 2004 LES of transitional flow using the approximate deconvolution model. Intl J. Heat Fluid Flow 25 (3), 549558.
Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297324.
Wallace, J. M. 2013 Highlights from 50 years of turbulent boundary layer research. J. Turbul. 13, 170.
Wang, B.2015 The investigation on the shock wave/boundary–layer interaction and flow field organization. PhD thesis, National University of Defense Technology, Changsha, China.
Willmarth, W. W. & Lu, S. S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 6592.
Wu, J. Z., Ma, H. Y. & Zhou, M. D. 2005 Vorticity and Vortex Dynamics. Springer.
Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.
Yan, Y., Chen, C., Fu, H. & Liu, C. 2014 DNS study on ${\it\lambda}$ -vortex and vortex ring formation in flow transition at match number 0.5. J. Turbul. 15, 121.
Yang, Y. & Pullin, D. I. 2010 On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions. J. Fluid Mech. 661, 446481.
Yang, Y. & Pullin, D. I. 2011a Evolution of vortex-surface fields in viscous Taylor–Green and Kida–Pelz flows. J. Fluid Mech. 685, 146164.
Yang, Y. & Pullin, D. I. 2011b Geometric study of Lagrangian and Eulerian structures in turbulent channel flow. J. Fluid Mech. 674, 6792.
Yang, Y., Pullin, D. I. & Bermejo-Moreno, I. 2010 Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence. J. Fluid Mech. 654, 233270.
Zhao, Y., Xia, Z., Shi, Y., Xiao, Z. & Chen, S. 2014 Constrained large-eddy simulation of laminar–turbulent transition in channel flow. Phys. Fluids 26, 095103.
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed