Adrian, R. J.
2007
Hairpin vortex organization in wall turbulence. Phys. Fluids
19, 041301.

Bake, S., Fernholz, H. H. & Kachanov, Y. S.
2000
Resemblance of K- and N-regimes of boundary-layer transition at late stages. Eur. J. Mech. (B/Fluids)
19, 1–22.

Bake, S., Meyer, D. G. W. & Rist, U.
2002
Turbulence mechanism in Klebanoff transition: a quantitative comparison of experiment and direct numerical simulation. J. Fluid Mech.
459, 217–243.

Batchelor, G. K.
1967
Introduction to Fluid Dynamics. Cambridge University Press.

Bernard, P. S.
2011
The hairpin vortex illusion. J. Phys.: Conf. Ser.
318, 062004.

Bernard, P. S.
2013
Vortex dynamics in transitional and turbulent boundary layers. AIAA J.
51, 1828–1842.

Blazevski, D. & Haller, G.
2014
Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Physica D
273, 46–62.

Borodulin, V. I., Gaponenko, V. R., Kachanov, Y. S., Meyer, D. G. W., Rist, U., Lian, Q. X. & Lee, C. B.
2002a
Late-stage transitional boundary-layer structures. Direct numerical simulation and experiment. Theor. Comput. Fluid Dyn.
15, 317–337.

Borodulin, V. I. & Kachanov, Y. S.
1988
Role of the mechanism of local secondary instability in K-breakdown of boundary layer. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk
18, 65–77.

Borodulin, V. I., Kachanov, Y. S. & Koptsev, D. B.
2002b
Experimental study of resonant interactions of instability waves in a self-similar boundary layer with an adverse pressure gradient: I. Tuned resonances. J. Turbul.
3, 1–38.

Borodulin, V. I., Kachanov, Y. S. & Roschektayev, A. P.
2006
Turbulence production in an APG-boundary-layer transition induced by randomized perturbations. J. Turbul.
7, 1–30.

Borodulin, V. I., Kachanov, Y. S. & Roschektayev, A. P.
2007
The deterministic wall turbulence is possible. In Advances in Turbulence XI. Proceedings of 11th EUROMECH European Turbulence Conference (ed. Palma, J. M. L. M. & Lopes, A. S.), pp. 176–178. Springer.

Brethouwer, G., Hunt, J. C. R. & Nieuwstadt, F. T. M.
2003
Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech.
474, 193–225.

Canuto, C., Hussaini, M. Y., Quateroni, A. & Zang, T. A.
1988
Spectral Methods in Fluid Dynamics. Springer.

Carino, E. R. & Brodkey, R. S.
1969
A visual investigation of the wall region in turbulent flow. J. Fluid Mech.
37, 1–30.

Chong, M. S., Perry, A. E. & Cantwell, B. J.
1990
A general classification of three-dimensional flow fields. Phys. Fluids A
2, 765–777.

Crow, S. C.
1970
Stability theory for a pair of trailing vortices. AIAA J.
8, 2172–2179.

Fasel, H., Thumm, A. & Bestek, H.
1993
Direct numerical simulation of transition in supersonic boundary layers: oblique breakdown. In Transition and Turbulent Compressible Flows (ed. Kral, L. D. & Zang, T. A.), pp. 77–92. ASME.

Gilbert, N. & Kleiser, L.
1990
Near-wall phenomena in transition to turbulence. In Near Wall Turbulence (ed. Kline, S. J. & Afgan, N. H.), pp. 7–27. Hemisphere.

Green, M. A., Rowley, C. W. & Haller, G.
2007
Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech.
572, 111–120.

Guo, H., Borodulin, V. I., Kachanov, Y. S., Pan, C., Wang, J. J., Lian, Q. X. & Wang, S. F.
2010
Nature of sweep and ejection events in transitional and turbulent boundary layers. J. Turbul.
11, 1–51.

Haller, G.
2001
Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D
149, 248–277.

Haller, G.
2015
Lagrangian coherent structures. Annu. Rev. Fluid Mech.
47, 137–162.

Hama, F. R.
1960
Boundary-layer transition induced by a vibrating ribbon on a flat plate. In Proc. Heat Transfer and Fluid Mech. Inst. (ed. Roshko, A., Sturtevant, B. & Bartz, D. R.), pp. 92–105. Standford University Press.

Hama, F. R. & Nutant, J.
1963
Detailed flow-field observations in the transition process in a thick boundary layer. In Proc. Heat Transfer and Fluid Mech. Inst., pp. 77–93. Standford University Press.

Head, M. R. & Bandyopadhyay, P.
1981
New aspects of turbulent boundary-layer structure. J. Fluid Mech.
107, 297–338.

Herbert, T.1984 Analysis of the subharmonic route to transition in boundary-layers. *AIAA Paper* 84-0009.

Herbert, T.
1988
Secondary instability of boundary layers. Annu. Rev. Fluid Mech.
20, 487–526.

Hunt, J. C. R., Wray, A. A. & Moin, P.
1988
Eddies, stream, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, 2, vol. 1, pp. 193–208. Center for Turbulence Research Report CTR-S88.

Jeong, J. & Hussain, F.
1995
On the identification of a vortex. J. Fluid Mech.
285, 69–94.

Kachanov, Y. S.
1994
Physical mechanism of laminar-boundary-layer transition. Annu. Rev. Fluid Mech.
26, 411–482.

Kachanov, Y. S., Kozlov, V. V. & Levchenko, V. Y.
1977
Nonlinear development of a wave in a boundary layer. Fluid Dyn.
12, 383–390.

Kim, J. & Moin, P.
1986
The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields. J. Fluid Mech.
162, 339–363.

Kim, J., Moin, P. & Moser, R. D.
1987
Turbulent statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.
177, 133–166.

Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M.
1962
The three-dimensional nature of boundary-layer instability. J. Fluid Mech.
12, 1–34.

Kleiser, L. & Laurien, E.
1985
Three-dimensional numerical simulation of laminar–turbulent transition and its control by periodic disturbances. In Laminar–Turbulent Transition (ed. Kozlov, V. V.), pp. 29–37. Springer.

Kleiser, L. & Zang, T. A.
1991
Numerical simulation of transition in wall-bounded shear flows. Annu. Rev. Fluid Mech.
23, 495–537.

Lee, C. B. & Li, R.
2007
Dominant structure for turbulent production in a transitional boundary layer. J. Turbul.
8, 1–34.

Lee, C. B. & Wu, J. Z.
2008
Transition in wall-bounded flows. Appl. Mech. Rev.
61, 030802.

LeHew, J. A., Guala, M. & MeKeon, B. J.
2013
Time-resolved measurements of coherent structures in the turbulent boundary layer. Exp. Fluids
54, 1508.

Lighthill, M. J.
1963
Introduction: boundary layer theory. In Laminar Boundary Layer Theory (ed. Rosenhead, L.), pp. 46–113. Oxford University Press.

Lozano-Durán, A. & Jiménez, J.
2014
Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech.
759, 432–471.

Malik, M. R.
1990
Numerical methods for hypersonic boundary layer stability. J. Comput. Phys.
86, 376–413.

Moin, P. & Kim, J.
1985
The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech.
155, 441–464.

Moin, P., Leonard, A. & Kim, J.
1986
Evolution of a curved vortex filament into a vortex ring. Phys. Fluids
29, 955.

Morkovin, M. V.
1984
Bypass transition to turbulence and research desiderta. In Transition in Turbines, NASA Conf. Pub. 2386, pp. 162–204.

Perry, A. E. & Chong, M. S.
1982
On the mechanism of wall turbulence. J. Fluid Mech.
119, 173–217.

Pope, S. B.
2000
Turbulent Flows. Cambridge University Press.

Pullin, D. I. & Yang, Y.
2014
Whither vortex tubes?
Fluid Dyn. Res.
46, 061418.

Rist, U. & Fasel, H.
1995
Direct numerical-simulation of controlled transition in a flat-plate boundary-layer. J. Fluid Mech.
298, 211–248.

Robinson, S. K.
1991
Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.
23, 601–639.

Sandham, N. D. & Kleiser, L.
1992
The late stages of transition to turbulence in channel flow. J. Fluid Mech.
245, 319–348.

Sayadi, T., Hamman, C. W. & Moin, P.
2013
Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech.
724, 480–509.

Schlatter, P., Li, Q., Örlü, R., Hussain, F. & Henningson, D. S.
2014
On the near-wall vortical structures at moderate Reynolds numbers. Eur. J. Mech. (B/Fluids)
48, 75–93.

Schlatter, P., Stolz, S. & Kleiser, L.
2004
LES of transitional flow using the approximate deconvolution model. Intl J. Heat Fluid Flow
25 (3), 549–558.

Spalart, P. R., Moser, R. D. & Rogers, M. M.
1991
Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys.
96, 297–324.

Wallace, J. M.
2013
Highlights from 50 years of turbulent boundary layer research. J. Turbul.
13, 1–70.

Wang, B.2015 The investigation on the shock wave/boundary–layer interaction and flow field organization. PhD thesis, National University of Defense Technology, Changsha, China.

Willmarth, W. W. & Lu, S. S.
1972
Structure of the Reynolds stress near the wall. J. Fluid Mech.
55, 65–92.

Wu, J. Z., Ma, H. Y. & Zhou, M. D.
2005
Vorticity and Vortex Dynamics. Springer.

Wu, X. & Moin, P.
2009
Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech.
630, 5–41.

Yan, Y., Chen, C., Fu, H. & Liu, C.
2014
DNS study on
${\it\lambda}$
-vortex and vortex ring formation in flow transition at match number 0.5. J. Turbul.
15, 1–21.
Yang, Y. & Pullin, D. I.
2010
On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions. J. Fluid Mech.
661, 446–481.

Yang, Y. & Pullin, D. I.
2011a
Evolution of vortex-surface fields in viscous Taylor–Green and Kida–Pelz flows. J. Fluid Mech.
685, 146–164.

Yang, Y. & Pullin, D. I.
2011b
Geometric study of Lagrangian and Eulerian structures in turbulent channel flow. J. Fluid Mech.
674, 67–92.

Yang, Y., Pullin, D. I. & Bermejo-Moreno, I.
2010
Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence. J. Fluid Mech.
654, 233–270.

Zhao, Y., Xia, Z., Shi, Y., Xiao, Z. & Chen, S.
2014
Constrained large-eddy simulation of laminar–turbulent transition in channel flow. Phys. Fluids
26, 095103.

Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M.
1999
Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech.
387, 353–396.