Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-23T07:22:34.289Z Has data issue: false hasContentIssue false

Eukaryotic swimming cells are shaped by hydrodynamic constraints

Published online by Cambridge University Press:  27 December 2023

Maciej Lisicki*
Affiliation:
Faculty of Physics, University of Warsaw, Warsaw, Pasteura 5, 02-093 Warsaw, Poland
Marcos F. Velho Rodrigues*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
Eric Lauga*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
*
Email addresses for correspondence: mklis@fuw.edu.pl, e.lauga@damtp.cam.ac.uk
These authors contributed equally to this work.
Email addresses for correspondence: mklis@fuw.edu.pl, e.lauga@damtp.cam.ac.uk

Abstract

Eukaryotic swimming cells such as spermatozoa, algae or protozoa use flagella or cilia to move in viscous fluids. The motion of their flexible appendages in the surrounding fluid induces propulsive forces that balance viscous drag on the cells and lead to a directed swimming motion. Here, we use our recently built database of cell motility (BOSO-Micro) to investigate the extent to which the shapes of eukaryotic swimming cells may be optimal from a hydrodynamic standpoint. We first examine the morphology of flexible flagella undergoing waving deformation and show that their amplitude-to-wavelength ratio is near that predicted theoretically to optimise the propulsive efficiency of active filaments. Next, we consider ciliates, for which locomotion is induced by the collective beating of short cilia covering their surface. We show that the aspect ratios of ciliates are close to that predicted to minimise the viscous drag of the cell body. Both results strongly suggest a key role played by hydrodynamic constraints, in particular viscous drag, in shaping eukaryotic swimming cells.

Type
JFM Rapids
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alouges, F., DeSimone, A. & Lefebvre, A. 2008 Optimal strokes for low Reynolds number swimmers: an example. J. Nonlinear Sci. 18, 277302.CrossRefGoogle Scholar
Alouges, F., DeSimone, A. & Lefebvre, A. 2009 Optimal strokes for axisymmetric microswimmers. Eur. Phys. J. E 28, 279284.CrossRefGoogle ScholarPubMed
Avron, J.E., Gat, O. & Kenneth, O. 2004 Optimal swimming at low Reynolds numbers. Phys. Rev. Lett. 93, 186001.CrossRefGoogle ScholarPubMed
Berg, H.C. & Anderson, R.A. 1973 Bacteria swim by rotating their flagellar filaments. Nature 245, 380382.CrossRefGoogle ScholarPubMed
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199208.CrossRefGoogle Scholar
Bourot, J.-M. 1974 On the numerical computation of the optimum profile in stokes flow. J. Fluid Mech. 65, 513515.CrossRefGoogle Scholar
Bray, D. 2000 Cell Movements. Garland.CrossRefGoogle Scholar
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339398.CrossRefGoogle Scholar
Elgeti, J., Winkler, R.G. & Gompper, G. 2015 Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 056601.CrossRefGoogle ScholarPubMed
Eloy, C. & Lauga, E. 2012 Kinematics of the most efficient cilium. Phys. Rev. Lett. 109, 038101.CrossRefGoogle ScholarPubMed
Fujita, T. & Kawai, T. 2001 Optimum shape of a flagellated microorganism. JSME Intl J. Ser. C 44, 952957.CrossRefGoogle Scholar
Gaffney, E.A., Gadelha, H., Smith, D.J., Blake, J.R. & Kirkman-Brown, J.C. 2011 Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43, 501528.CrossRefGoogle Scholar
Goldstein, R.E. 2015 Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47, 343375.CrossRefGoogle ScholarPubMed
Golestanian, R. & Ajdari, A. 2008 Analytic results for the three-sphere swimmer at low Reynolds number. Phys. Rev. E 77, 036308.CrossRefGoogle ScholarPubMed
Gray, J. 1955 The movement of sea-urchin spermatozoa. J. Expl Biol. 32, 775801.CrossRefGoogle Scholar
Guasto, J.S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373400.CrossRefGoogle Scholar
Howard, J. 2001 Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates.Google Scholar
Jahn, T.L. & Votta, J.J. 1972 Locomotion of protozoa. Annu. Rev. Fluid Mech. 4, 93116.CrossRefGoogle Scholar
Koch, D.L. & Subramanian, G. 2011 Collective hydrodynamics of swimming micro-organisms: living fluids. Annu. Rev. Fluid Mech. 43, 637659.CrossRefGoogle Scholar
Kumar, M., Walkama, D.M., Guasto, J.S. & Ardekani, A.M. 2019 Flow-induced buckling dynamics of sperm flagella. Phys. Rev. E 100, 063107.CrossRefGoogle ScholarPubMed
Lauga, E. 2016 Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105130.CrossRefGoogle Scholar
Lauga, E. 2020 a The Fluid Dynamics of Cell Motility. Cambridge University Press.CrossRefGoogle Scholar
Lauga, E. 2020 b Traveling waves are hydrodynamically optimal for long-wavelength flagella. Phys. Rev. Fluids 5, 123101.CrossRefGoogle Scholar
Lauga, E. & Eloy, C. 2013 Shape of optimal active flagella. J. Fluid Mech. 730, R1.CrossRefGoogle Scholar
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
Leshansky, A.M., Kenneth, O., Gat, O. & Avron, J.E. 2007 A frictionless microswimmer. New J. Phys. 9, 126.CrossRefGoogle Scholar
Lighthill, J. 1975 Mathematical Biofluiddynamics. SIAM.CrossRefGoogle Scholar
Lighthill, J. 1976 Flagellar hydrodynamics—the John von Neumann lecture, 1975. SIAM Rev. 18, 161230.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2010 Efficiency optimization and symmetry-breaking in an envelope model for ciliary locomotion. Phys. Fluids 22, 111901.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2011 Optimal feeding is optimal swimming for all Péclet numbers. Phys. Fluids 23, 101901.CrossRefGoogle Scholar
Montenegro-Johnson, T.D. & Lauga, E. 2014 Optimal swimming of a sheet. Phys. Rev. E 89, 060701.CrossRefGoogle ScholarPubMed
Montenegro-Johnson, T.D. & Lauga, E. 2015 The other optimal stokes drag profile. J. Fluid Mech. 762, R3.CrossRefGoogle Scholar
Nasouri, B., Vilfan, A. & Golestanian, R. 2019 Efficiency limits of the three-sphere swimmer. Phys. Rev. Fluids 4, 073101.CrossRefGoogle Scholar
Nasouri, B., Vilfan, A. & Golestanian, R. 2021 Minimum dissipation theorem for microswimmers. Phys. Rev. Lett. 126, 034503.CrossRefGoogle ScholarPubMed
Okuno, M., Asai, D.J., Ogawa, K. & Brokaw, C.J. 1981 Effects of antibodies against dynein and tubulin on the stiffness of flagellar axonemes. J. Cell Biol. 91, 689694.CrossRefGoogle ScholarPubMed
Okuno, M. & Hiramoto, Y. 1979 Direct measurements of the stiffness of echinoderm sperm flagella. J. Expl Biol. 79, 235243.CrossRefGoogle Scholar
Omori, T., Ito, H. & Ishikawa, T. 2020 Swimming microorganisms acquire optimal efficiency with multiple cilia. Proc. Natl Acad. Sci. USA 117, 3020130207.CrossRefGoogle ScholarPubMed
Osterman, N. & Vilfan, A. 2011 Finding the ciliary beating pattern with optimal efficiency. Proc. Natl Acad. Soc. USA 108, 1572715732.CrossRefGoogle ScholarPubMed
Pedley, T.J. & Kessler, J.O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313358.CrossRefGoogle Scholar
Pelle, D.W., Brokaw, C.J., Lesich, K.A. & Lindemann, C.B. 2009 Mechanical properties of the passive sea urchin sperm flagellum. Cell Motil. Cytoskel. 66, 721735.CrossRefGoogle ScholarPubMed
Pironneau, O. 1973 On optimum profiles in stokes flow. J. Fluid Mech. 59, 117128.CrossRefGoogle Scholar
Pironneau, O. 1974 On optimum design in fluid mechanics. J. Fluid Mech. 64, 97110.CrossRefGoogle Scholar
Pironneau, O. & Katz, D.F. 1974 Optimal swimming of flagellated microorganisms. J. Fluid Mech. 66, 391415.CrossRefGoogle Scholar
Pironneau, O. & Katz, D.F. 1975 Optimal swimming of motion of flagella. In Swimming and Flying in Nature (ed. T.Y. Wu, C.J. Brokaw & C. Brennen), vol. 1, pp. 161–172. Plenum.Google Scholar
Purcell, E.M. 1977 Life at low Reynolds number. Am. J. Phys. 45, 311.CrossRefGoogle Scholar
Purcell, E.M. 1997 The efficiency of propulsion by a rotating flagellum. Proc. Natl Acad. Sci. USA 94, 1130711311.CrossRefGoogle ScholarPubMed
Rodrigues, M.F.V., Lisicki, M. & Lauga, E. 2021 The bank of swimming organisms at the micron scale (BOSO-Micro). PLoS One 16, e0252291.CrossRefGoogle Scholar
Schavemaker, P.E. & Lynch, M. 2022 Flagellar energy costs across the tree of life. eLife 11, e77266.CrossRefGoogle ScholarPubMed
Schuech, R., Hoehfurtner, T., Smith, D.J. & Humphries, S. 2019 Motile curved bacteria are pareto-optimal. Proc. Natl Acad. Sci. USA 116, 1444014447.CrossRefGoogle ScholarPubMed
Spagnolie, S.E. & Lauga, E. 2010 The optimal elastic flagellum. Phys. Fluids 22, 031901.CrossRefGoogle Scholar
Spagnolie, S.E. & Lauga, E. 2011 Comparative hydrodynamics of bacterial polymorphism. Phys. Rev. Lett. 106, 058103.CrossRefGoogle ScholarPubMed
Tam, D. & Hosoi, A.E. 2007 Optimal stroke patterns for Purcell's three-link swimmer. Phys. Rev. Lett. 98, 068105.CrossRefGoogle ScholarPubMed
Tam, D. & Hosoi, A.E. 2011 a Optimal kinematics and morphologies for spermatozoa. Phys. Rev. E 83, 045303.CrossRefGoogle ScholarPubMed
Tam, D. & Hosoi, A.E. 2011 b Optimal feeding and swimming gaits of biflagellated organisms. Proc. Natl Acad. Soc. USA 108, 10011006.CrossRefGoogle ScholarPubMed
Vilfan, A. 2012 Optimal shapes of surface slip driven self-propelled microswimmers. Phys. Rev. Lett. 109, 128105.CrossRefGoogle ScholarPubMed
Xu, G., Wilson, K.S., Okamoto, R.J., Shao, J.-Y., Dutcher, S.K. & Bayly, P.V. 2016 Flexural rigidity and shear stiffness of flagella estimated from induced bends and counterbends. Biophys. J. 110, 27592768.CrossRefGoogle ScholarPubMed
Yates, G.T. 1986 How microorganisms move through water. Am. Sci. 74, 358365.Google Scholar