Skip to main content Accessibility help

Elastohydrodynamics of a pre-stretched finite elastic sheet lubricated by a thin viscous film with application to microfluidic soft actuators

  • Evgeniy Boyko (a1), Ran Eshel (a1), Khaled Gommed (a1), Amir D. Gat (a1) and Moran Bercovici (a1) (a2)...


The interaction of a thin viscous film with an elastic sheet results in coupling of pressure and deformation, which can be utilized as an actuation mechanism for surface deformations in a wide range of applications, including microfluidics, optics and soft robotics. Implementation of such configurations inherently takes place over finite domains and often requires some pre-stretching of the sheet. Under the assumptions of strong pre-stretching and small deformations of the lubricated elastic sheet, we use the linearized Reynolds and Föppl–von Kármán equations to derive closed-form analytical solutions describing the deformation in a finite domain due to external forces, accounting for both bending and tension effects. We provide a closed-form solution for the case of a square-shaped actuation region and present the effect of pre-stretching on the dynamics of the deformation. We further present the dependence of the deformation magnitude and time scale on the spatial wavenumber, as well as the transition between stretching- and bending-dominant regimes. We also demonstrate the effect of spatial discretization of the forcing (representing practical actuation elements) on the achievable resolution of the deformation. Extending the problem to an axisymmetric domain, we investigate the effects arising from nonlinearity of the Reynolds and Föppl–von Kármán equations and present the deformation behaviour as it becomes comparable to the initial film thickness and dependent on the induced tension. These results set the theoretical foundation for implementation of microfluidic soft actuators based on elastohydrodynanmics.


Corresponding author

Email addresses for correspondence:,


Hide All
Al-Housseiny, T. T., Christov, I. C. & Stone, H. A. 2013 Two-phase fluid displacement and interfacial instabilities under elastic membranes. Phys. Rev. Lett. 111 (3), 034502.
Arutkin, M., Ledesma-Alonso, R., Salez, T. & Raphaël, E. 2017 Elastohydrodynamic wake and wave resistance. J. Fluid Mech. 829, 538550.
Bjorck, A. 1996 Numerical Methods for Least Squares Problems. SIAM.
Christov, I. C., Cognet, V., Shidhore, T. C. & Stone, H. A. 2018 Flow rate–pressure drop relation for deformable shallow microfluidic channels. J. Fluid Mech. 841, 267286.
Chronis, N., Liu, G. L., Jeong, K. H. & Lee, L. P. 2003 Tunable liquid-filled microlens array integrated with microfluidic network. Opt. Express 11 (19), 23702378.
Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A. & Doyle, P. S. 2007 Stop-flow lithography in a microfluidic device. Lab on a Chip 7 (7), 818828.
Gervais, T., El-Ali, J., Günther, A. & Jensen, K. F. 2006 Flow-induced deformation of shallow microfluidic channels. Lab on a Chip 6 (4), 500507.
Grotberg, J. B. & Jensen, O. E. 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121147.
Grover, W. H., Ivester, R. H. C., Jensen, E. C. & Mathies, R. A. 2006 Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab on a Chip 6 (5), 623631.
Hardy, B. S., Uechi, K., Zhen, J. & Kavehpour, H. P. 2009 The deformation of flexible PDMS microchannels under a pressure driven flow. Lab on a Chip 9 (7), 935938.
Hewitt, I. J., Balmforth, N. J. & De Bruyn, J. R. 2015 Elastic-plated gravity currents. Eur. J. Appl. Maths 26 (01), 131.
Hosoi, A. E. & Mahadevan, L. 2004 Peeling, healing, and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93 (13), 137802.
Howell, P., Kozyreff, G. & Ockendon, J. 2009 Applied Solid Mechanics. Cambridge University Press.
Hunter, R. J. 2000 Foundations of Colloid Science. Oxford University Press.
Jeong, K. H., Liu, G. L., Chronis, N. & Lee, L. P. 2004 Tunable microdoublet lens array. Opt. Express 12 (11), 24942500.
Kim, S., Laschi, C. & Trimmer, B. 2013 Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31 (5), 287294.
Kodio, O., Griffiths, I. M. & Vella, D. 2017 Lubricated wrinkles: Imposed constraints affect the dynamics of wrinkle coarsening. Phys. Rev. Fluids 2 (1), 014202.
Landau, L. D. & Lifshitz, E. M. 1959 Theory of Elasticity. Pergamon.
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.
Lister, J. R., Peng, G. G. & Neufeld, J. A. 2013 Viscous control of peeling an elastic sheet by bending and pulling. Phys. Rev. Lett. 111 (15), 154501.
Michaut, C. 2011 Dynamics of magmatic intrusions in the upper crust: theory and applications to laccoliths on Earth and the Moon. J. Geophys. Res. 116 (B5), B05205.
Mukherjee, U., Chakraborty, J. & Chakraborty, S. 2013 Relaxation characteristics of a compliant microfluidic channel under electroosmotic flow. Soft Matt. 9 (5), 15621569.
Panda, P., Yuet, K. P., Dendukuri, D., Hatton, T. A. & Doyle, P. S. 2009 Temporal response of an initially deflected PDMS channel. New J. Phys. 11 (11), 115001.
Peng, G. G., Pihler-Puzović, D., Juel, A., Heil, M. & Lister, J. R. 2015 Displacement flows under elastic membranes. Part 2. Analysis of interfacial effects. J. Fluid Mech. 784, 512547.
Pihler-Puzović, D., Illien, P., Heil, M. & Juel, A. 2012 Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108 (7), 074502.
Pihler-Puzović, D., Juel, A. & Heil, M. 2014 The interaction between viscous fingering and wrinkling in elastic-walled Hele-Shaw cells. Phys. Fluids 26 (2), 022102.
Pihler-Puzović, D., Périllat, R., Russell, M., Juel, A. & Heil, M. 2013 Modelling the suppression of viscous fingering in elastic-walled Hele-Shaw cells. J. Fluid Mech. 731, 162183.
Prosperetti, A. 2011 Advanced Mathematics for Applications. Cambridge University Press.
Rubin, S., Tulchinky, A., Gat, A. D. & Bercovici, M. 2017 Elastic deformations driven by non-uniform lubrication flows. J. Fluid Mech. 812, 841865.
Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., Chen, X., Wang, M. & Whitesides, G. M. 2011 Multigait soft robot. Proc. Natl Acad. Sci. 108 (51), 2040020403.
Thorsen, T., Maerkl, S. J. & Quake, S. R. 2002 Microfluidic large-scale integration. Science 298 (5593), 580584.
Timoshenko, S. & Woinkowsky-Krieger, S. 1987 Theory of Plates and Shells. McGraw-Hill.
Tulchinsky, A. & Gat, A. D. 2016 Transient dynamics of an elastic Hele-Shaw cell due to external forces with application to impact mitigation. J. Fluid Mech. 800, 517530.
Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. 2000 Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288 (5463), 113116.
Zheng, Z., Griffiths, I. M. & Stone, H. A. 2015 Propagation of a viscous thin film over an elastic membrane. J. Fluid Mech. 784, 443464.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Boyko et al. supplementary movie 1
The evolution of pressure and deformation fields, resulting from two square-shaped regions with opposite signs of zeta potential, subjected to an electric field suddenly applied at t=0.

 Video (9.4 MB)
9.4 MB

Boyko et al. supplementary movie 2
The steady-state oscillations of pressure and deformation fields, resulting from a single square region with a fixed zeta potential, subjected to an oscillating electric field.

 Video (9.3 MB)
9.3 MB
Supplementary material

Boyko et al. supplementary material
Supplementary material

 PDF (1.7 MB)
1.7 MB

Elastohydrodynamics of a pre-stretched finite elastic sheet lubricated by a thin viscous film with application to microfluidic soft actuators

  • Evgeniy Boyko (a1), Ran Eshel (a1), Khaled Gommed (a1), Amir D. Gat (a1) and Moran Bercovici (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed