Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T09:34:01.609Z Has data issue: false hasContentIssue false

Effects of twist on the evolution of knotted magnetic flux tubes

Published online by Cambridge University Press:  22 May 2020

Shiying Xiong
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, 100871Beijing, PR China
Yue Yang*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, 100871Beijing, PR China CAPT and BIC-ESAT, Peking University, 100871Beijing, PR China
*
Email address for correspondence: yyg@pku.edu.cn

Abstract

We develop a general method for constructing knotted flux tubes with finite thickness, arbitrary shape and tunable twist. The central axis of the knotted tube is specified by a smooth and non-degenerate parametric equation. The helicity of the corresponding solenoidal knotted field can be explicitly decomposed into writhe, normalized total torsion and intrinsic twist. We construct several knotted magnetic flux tubes with various twisting degrees, and investigate the effect of twist on their evolution in resistive magnetohydrodynamic flows using direct numerical simulation. For large twist, the magnetic knot gradually shrinks to a tight stable state, similar to the relaxation process in ideal magnetohydrodynamic flows. For small twist, the knotted flux tube splits at early times, accompanied by a rising magnetic dissipation rate. We elucidate the mechanism of the tube splitting using the phase portrait of the Lorentz force projected onto divergence-free space. For finite twist, the Hopf bifurcation from an unstable spiral point to a limit cycle occurs on the phase plane. In the evolution, field lines inside the limit cycle form invariant tori, whereas they become chaotic outside the limit cycle.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aluie, H.2009 Hydrodynamic and magnetohydrodynamic turbulence: invariants, cascades, and locality. PhD thesis, The Johns Hopkins University.Google Scholar
Amari, T., Canou, A., Aly, J., Delyon, F. & Alauzet, F. 2018 Magnetic cage and rope as the key for solar eruptions. Nature 554, 211215.CrossRefGoogle ScholarPubMed
Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 121.CrossRefGoogle Scholar
Arrayás, M., Bouwmeester, D. & Trueba, J. L. 2017 Knots in electromagnetism. Phys. Rep. 667, 161.Google Scholar
Berger, M. A. 1999 Introduction to magnetic helicity. Plasma Phys. Control. Fusion 41, B167.CrossRefGoogle Scholar
Berger, M. A. & Field, G. B. 1984 The topological properties of magnetic helicity. J. Fluid Mech. 147, 133148.CrossRefGoogle Scholar
Biskamp, D. 1997 Magnetic reconnection in plasmas. Astrophys. Space Sci. 242, 165207.CrossRefGoogle Scholar
Boozer, A. H. 1981 Plasma equilibrium with rational magnetic surfaces. Phys. Fluids 24, 19992003.CrossRefGoogle Scholar
Braithwaite, J. 2009 Axisymmetric magnetic fields in stars: relative strengths of poloidal and toroidal components. Mon. Not. R. Astron. Soc. 397, 763774.CrossRefGoogle Scholar
Bretherton, F. P. 1970 A note on Hamilton’s principle for perfect fluids. J. Fluid Mech. 44, 1931.CrossRefGoogle Scholar
Candelaresi, S., Sordo, F. D. & Brandenburg, A. 2010 Decay of trefoil and other magnetic knots. Proc. Intl Astron. Union 6, 461463.CrossRefGoogle Scholar
Cartes, C., Bustamante, M. D. & Brachet, M. E. 2007 Generalized Eulerian–Lagrangian description of Navier–Stokes dynamics. Phys. Fluids 19, 077101.CrossRefGoogle Scholar
Chern, A., Knöppel, F., Pinkall, U. & Schröder, P. 2017 Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph. 36, 142.Google Scholar
Chern, A., Knöppel, F., Pinkall, U., Schröder, P. & Weissmann, S. 2016 Schrödinger’s smoke. ACM Trans. Graph. 35, 77.Google Scholar
Chui, A. Y. K. & Moffatt, H. K. 1995 The energy and helicity of knotted magnetic flux tubes. Proc. R. Soc. Lond. A 451, 609629.Google Scholar
Clebsch, A. 1859 Ueber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 56, 110.Google Scholar
Dennis, M. R., King, R. P., Jack, B., O’Holleran, K. & Padgett, M. J. 2010 Isolated optical vortex knots. Nat. Phys. 6, 118121.CrossRefGoogle Scholar
Dinklage, A., Beidler, C. D., Helander, P., Fuchert, G., Maassberg, H., Rahbarnia, K., Pedersen, T. S., Turkin, Y., Wolf, R. C., Alonso, A. et al. 2018 Magnetic configuration effects on the Wendelstein 7-X stellarator. Nat. Phys. 14, 855860.CrossRefGoogle Scholar
Elsässer, W. M. 1950 The hydromagnetic equations. Phys. Rev. 79, 183183.CrossRefGoogle Scholar
Gold, T. & Hoyle, F. 1960 On the origin of solar flares. Mon. Not. R. Astron. Soc. 120, 89105.CrossRefGoogle Scholar
Graham, C. R. & Henyey, F. S. 2000 Clebsch representation near points where the vorticity vanishes. Phys. Fluids 12, 744746.CrossRefGoogle Scholar
Hamada, S. 1962 Hydromagnetic equilibria and their proper coordinates. Nucl. Fusion 2, 23.CrossRefGoogle Scholar
Hao, J., Xiong, S. & Yang, Y. 2019 Tracking vortex surfaces frozen in the virtual velocity in non-ideal flows. J. Fluid Mech. 863, 513544.CrossRefGoogle Scholar
He, P. & Yang, Y. 2016 Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals. Phys. Fluids 28, 037101.CrossRefGoogle Scholar
Hood, A. W. & Priest, E. R. 1979 Kink instability of solar coronal loops as the cause of solar flares. Solar Phys. 64, 303321.CrossRefGoogle Scholar
Hopf, H. 1931 Über die Abbildungen der Dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104, 637665.Google Scholar
Hudson, S. R., Startsev, E. & Feibush, E. 2014 A new class of magnetic confinement device in the shape of a knot. Phys. Plasmas 21, 010705.CrossRefGoogle Scholar
Hussain, F. & Duraisamy, K. 2011 Mechanics of viscous vortex reconnection. Phys. Fluids 23, 021701.CrossRefGoogle Scholar
Inoue, S., Kusano, K., Büchner, J. & Skála, J. 2018 Formation and dynamics of a solar eruptive flux tube. Nat. Commun. 9, 174.CrossRefGoogle ScholarPubMed
Kamchatnov, A. M. 1982 Topological solitons in magnetohydrodynamics. Sov. Phys. JETP 55, 6973.Google Scholar
Kedia, H., Foster, D., Dennis, M. R. & Irvine, W. T. M. 2016 Weaving knotted vector fields with tunable helicity. Phys. Rev. Lett. 117, 274501.CrossRefGoogle ScholarPubMed
Kerr, R. M. 2018a Topology of interacting coiled vortex rings. J. Fluid Mech. 854, R2.CrossRefGoogle Scholar
Kerr, R. M. 2018b Trefoil knot timescales for reconnection and helicity. Fluid Dyn. Res. 50, 011422.Google Scholar
Kleckner, D. & Irvine, W. T. M. 2013 Creation and dynamics of knotted vortices. Nat. Phys. 9, 253258.CrossRefGoogle Scholar
Kleckner, D., Kauffman, L. H. & Irvine, W. T. M. 2016 How superfluid vortex knots untie. Nat. Phys. 12, 650655.CrossRefGoogle Scholar
Kruskal, M. D., Johnson, J. L., Gottlieb, M. B. & Goldman, L. M. 1958 Hydromagnetic instability in a stellarator. Phys. Fluids 1, 421.CrossRefGoogle Scholar
Kruskal, M. D. & Kulsrud, R. M. 1958 Equilibrium of a magnetically confined plasma in a toroid. Phys. Fluids 1, 265274.CrossRefGoogle Scholar
Laing, C. E., Ricca, R. L. & Sumners, D. W. L. 2015 Conservation of writhe helicity under anti-parallel reconnection. Sci. Rep. 5, 9224.Google ScholarPubMed
Liewer, P. C. 1985 Measurements of microturbulence in tokamaks and comparisons with theories of turbulence and anomalous transport. Nucl. Fusion 25, 543621.CrossRefGoogle Scholar
Low, B. C. 1996 Solar activity and the corona. Solar Phys. 167, 217265.CrossRefGoogle Scholar
Maggioni, F. & Ricca, R. L. 2009 On the groundstate energy of tight knots. Proc. R. Soc. Lond. A 465, 27612783.CrossRefGoogle Scholar
Marsh, G. E. 1996 Force-Free Magnetic Fields Solutions, Topology and Applications. World Scientific.CrossRefGoogle Scholar
Martinez, A., Ravnik, M., Lucero, B., Visvanathan, R., Z̆umer, S. & Smalyukh, I. I. 2014 Mutually tangled colloidal knots and induced defect loops in nematic fields. Nat. Mater. 13, 258263.CrossRefGoogle ScholarPubMed
Melander, M. V. & Hussain, F. 1989 Cross-linking of two antiparallel vortex tubes. Phys. Fluids A 1, 633636.CrossRefGoogle Scholar
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117129.CrossRefGoogle Scholar
Moffatt, H. K. 1990 The energy spectrum of knots and links. Nature 347, 367369.CrossRefGoogle Scholar
Moffatt, H. K. 2014 Helicity and singular structures in fluid dynamics. Proc. Natl Acad. Sci. USA 111, 36633670.CrossRefGoogle ScholarPubMed
Moffatt, H. K. & Ricca, R. L. 1992 Helicity and the Călugăreanu invariant. Proc. R. Soc. Lond. A 439, 411429.Google Scholar
Moreau, J. J. 1961 Constantes d’un îlot tourbillonnaire en fluide parfait barotrope. C. R. Acad. Sci. Paris 252, 28102812.Google Scholar
Nelson, B. A., Jarboe, T. R., Martin, A. K., Orvis, D. J., Xie, J., Zhang, C. & Zhou, L. 1995 Formation and sustainment of a lowaspect ratio tokamak by coaxial helicity injection. Phys. Plasmas 2, 2337.CrossRefGoogle Scholar
Pohl, W. F. 1968 The self-linking number of a closed space curve. J. Math. Mech. 17, 975985.Google Scholar
Priest, E. & Forbes, T. 2000 Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press.CrossRefGoogle Scholar
Ranada, A. F. 1989 A topological theory of the electromagnetic field. Lett. Math. Phys. 18, 97106.CrossRefGoogle Scholar
Ricca, R. L. 2008 Topology bounds energy of knots and links. Proc. R. Soc. Lond. A 464, 293300.Google Scholar
Rosner, R., Low, B. C., Tsinganos, K. & Berger, M. A. 1989 On the relationship between the topology of magnetic field lines and flux surfaces. Geophys. Astrophys. Fluid Dyn. 48, 251271.CrossRefGoogle Scholar
Scheeler, M. W., Kleckner, D., Proment, D., Kindlmann, G. L. & Irvine, W. T. M. 2014 Helicity conservation by flow across scales in reconnecting vortex links and knots. Proc. Natl Acad. Sci. USA 111, 1535015355.CrossRefGoogle ScholarPubMed
Scheeler, M. W., van Rees, W. M., Kedia, H., Kleckner, D. & Irvine, W. T. M. 2017 Complete measurement of helicity and its dynamics in vortex tube. Science 357, 487491.CrossRefGoogle Scholar
Smiet, C. B., Candelaresi, S. & Bouwmeester, D. 2017 Ideal relaxation of the Hopf fibration. Phys. Plasmas 24, 072110.CrossRefGoogle Scholar
Smiet, C. B., Candelaresi, S., Thompson, A., Swearngin, J., Dalhuisen, J. W. & Bouwmeester, D. 2015 Self-organizing knotted magnetic structures in plasma. Phys. Rev. Lett. 115, 095001.CrossRefGoogle ScholarPubMed
Strauss, H. R. 1976 Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134140.CrossRefGoogle Scholar
Taylor, J. B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 11391141.CrossRefGoogle Scholar
Taylor, J. B. 1986 Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741763.CrossRefGoogle Scholar
Truesdell, C. 1954 The Kinematics of Vorticity, 1st edn. Indiana University Press.Google Scholar
Wang, H., Cao, W., Liu, C., Xu, Y., Liu, R., Zeng, Z., Chae, J. & Ji, H. 2015 Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope. Nat. Commun. 6, 7008.CrossRefGoogle ScholarPubMed
Wesson, J. A. 1976 Hydromagnetic stability of tokamaks. Nucl. Fusion 18, 87132.CrossRefGoogle Scholar
Wingen, A., Wilcox, R. S., Seal, S. K., Unterberg, E. A., Cianciosa, M. R., Delgado-Aparicio, L. F., Hirshman, S. P. & Lao, L. L. 1976 Use of reconstructed 3D equilibria to determine onset conditions of helical cores in tokamaks for extrapolation to ITER. Nucl. Fusion 58, 036004.Google Scholar
Woltjer, L. 1958 A theorem on force-free magnetic fields. Proc. Natl Acad. Sci. USA 44, 489491.CrossRefGoogle ScholarPubMed
Xiong, S. & Yang, Y. 2019a Construction of knotted vortex tubes with the writhe-dependent helicity. Phys. Fluids 31, 047101.CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2019b Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874, 952978.CrossRefGoogle Scholar
Yang, S., Büchner, J., Santos, J. C. & Zhang, H. 2013 Evolution of relative magnetic helicity: method of computation and its application to a simulated solar corona above an active region. Solar Phys. 283, 369382.CrossRefGoogle Scholar
Yang, Y. & Pullin, D. I. 2010 On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions. J. Fluid Mech. 661, 446481.CrossRefGoogle Scholar
Yao, J. & Hussain, F. 2020 A physical model of turbulence cascade via vortex reconnection sequence and avalanche. J. Fluid Mech. 883, A53.CrossRefGoogle Scholar
Yeates, A. R., Hornig, G. & Wilmot-Smith, A. L. 2010 Topological constraints on magnetic relaxation. Phys. Rev. Lett. 105, 085002.CrossRefGoogle ScholarPubMed
Zakharov, V. E. & Kuznetsov, E. A. 1997 Hamiltonian formalism for nonlinear waves. Phys.-Usp. 40, 10871116.CrossRefGoogle Scholar
Zweibel, E. G. & Yamada, M. 2016 Perspectives on magnetic reconnection. Proc. R. Soc. Lond. A 472, 20160479.CrossRefGoogle ScholarPubMed