Skip to main content Accessibility help

The effects of geometry and heating rate on thermocapillary convection in the liquid bridge

  • Qi Kang (a1) (a2), Di Wu (a1), Li Duan (a1) (a2), Liang Hu (a1), Jia Wang (a1), Pu Zhang (a1) and Wenrui Hu (a1) (a2)...


The experimental study on thermocapillary convection in liquid bridges of large Prandtl number has been carried out on Tiangong-2 in space. The purpose of these experiments is to study the oscillation instability of thermocapillary convection, and to discover and recognize the mechanism of destabilization of thermocapillary convection in the microgravity environment in space. In this paper, the geometry of a half-floating-zone liquid bridge is featured by the aspect ratio Ar and volume ratio Vr, and its influence on critical conditions of oscillatory thermocapillary convection is studied. More than 700 sets of space experiments have been finished. The critical conditions and oscillation characteristics of thermocapillary convection instability in the ArVr parameter space have been fully obtained under microgravity conditions for the first time. It is found that the ArVr parameter space can be divided into two regions of different critical conditions and oscillation characteristics: the region of low frequency oscillation, and the region of high frequency oscillation. More importantly, we obtain the complete configuration of these two stability neutral curves, and find that the low frequency mode is a ‘’ type curve. Based on this, we discuss the influence of heating rate on the oscillation mode. It is found that the heating rate affects the selection of critical mode, which results in a jump change of critical temperature difference. The findings of this study are helpful to better understand the critical modes and transition processes of thermocapillary convection in liquid bridges with different configurations.


Corresponding author

Email addresses for correspondence:,


Hide All
Albanese, C., Carotenuto, L., Castagnolo, D., Ceglia, E. & Monti, R. 1995 An investigation on the ‘Onset’ of oscillatory Marangoni flow. Adv. Space Res. 16 (7), 8794.
Chen, Q. S. & Hu, W. R. 1998 Influence of liquid bridge volume on instability of floating half zone convection. Intl J. Heat Mass Transfer 41 (6–7), 825837.
Chun, C. H. & Wuest, W. 1979 Experiments on the transition from the steady to the oscillatory Marangoni-convection of a floating zone under reduced gravity effect. Acta Astronaut. 6 (9), 10731082.
Cröll, A., Müller-Sebert, W., Benz, K. W. & Nitsche, R. 1991 Natural and thermocapillary convection in partially confined silicon melt zones. Microgravity Sci. Technol. 3 (4), 204215.
Cröll, A., Tegetmeier, A., Nagel, G. & Benz, K. W. 1994 Floating-zone growth of GaAs under microgravity during the D2-mission. Cryst. Res. Technol. 29 (3), 335342.
Dejam, M. & Hassanzadeh, H. 2011 Formation of liquid bridges between porous matrix blocks. AIChE J. 57 (2), 286298.
Dejam, M., Hassanzadeh, H. & Chen, Z. 2014a Reinfiltration through liquid bridges formed between two matrix blocks in fractured rocks. J. Hydrol. 519, 35203530.
Dejam, M., Hassanzadeh, H. & Chen, Z. 2014b Shape of liquid bridges in a horizontal fracture. J. Fluid Flow Heat Mass Transfer 1, 18.
Dejam, M., Hassanzadeh, H. & Chen, Z. 2015 Capillary forces between two parallel plates connected by a liquid bridge. J. Porous Media 18 (3), 179188.
Eyer, A., Leiste, H. & Nitsche, R. 1985 Floating zone growth of silicon under microgravity in a sounding rocket. J. Cryst. Growth 71 (1), 173182.
Hu, W. R., Shu, J. Z., Zhou, R. & Tang, Z. M. 1994 Influence of liquid bridge volume on the onset of oscillation in floating zone convection. I. Experiments. J. Cryst. Growth 142 (3–4), 379384.
Hu, W. R. & Tang, Z. M. 2013 Onset of oscillatory thermocapillary convection. In Mechanics Down Under, pp. 8599. Springer.
Hu, W. R., Tang, Z. M. & Li, K. 2008 Thermocapillary convection in floating zones. Appl. Mech. Rev. 61 (1), 010803.
Kang, Q., Jiang, H., Duan, L., Zhang, C. & Hu, W. R. 2019a The critical condition and oscillation-transition characteristics of thermocapillary convection in the space experiment on SJ-10 satellite. Intl J. Heat Mass Transfer 135, 479490.
Kang, Q., Wang, J., Duan, L., Su, Y., He, J., Wu, D. & Hu, W. R. 2019b The volume ratio effect on flow patterns and transition processes of thermocapillary convection. J. Fluid Mech. 868, 560583.
Kang, Q., Wu, D., Duan, L., He, J., Hu, L., Duan, L. & Hu, W. 2019c Surface configurations and wave patterns of thermocapillary convection onboard the SJ10 satellite. Phys. Fluids 31 (4), 044105.
Kawamura, H., Nishino, K., Matsumoto, S. & Ueno, I. 2012 Report on microgravity experiments of Marangoni convection aboard international space station. J. Heat Transfer 134 (3), 031005.
Mashayekhizadeh, V., Kharrat, R., Ghazanfari, M. H. & Dejam, M. 2012 An experimental investigation of fracture tilt angle effects on frequency and stability of liquid bridges in fractured porous media. Petrol. Sci. Technol. 30 (8), 807816.
Masud, J., Kamotani, Y. & Ostrach, S. 1997 Oscillatory thermocapillary flow in cylindrical columns of high Prandtl number fluids. J. Thermophys. Heat Transfer 11 (1), 105111.
Nishino, K., Yano, T., Kawamura, H., Matsumoto, S., Ueno, I. & Ermakov, M. K. 2015 Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity. J. Cryst. Growth 420, 5763.
Preisser, F., Schwabe, D. & Scharmann, A. 1983 Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. 126, 545567.
Ryzhkov, I. I. 2011 Thermocapillary instabilities in liquid bridges revisited. Phys. Fluids 23 (8), 082103.
Sakurai, M., Ohishi, N. & Hirata, A. 2004 Effect of liquid bridge form on oscillatory thermocapillary convection under 1 g and μg conditions. Acta Astronaut. 55 (12), 977983.
Sakurai, M., Ohishi, N. & Hirata, A. 2007a Oscillatory thermocapillary convection in a liquid bridge. Part 1 – 1g experiments. J. Cryst. Growth 308 (2), 352359.
Sakurai, M., Ohishi, N. & Hirata, A. 2007b Oscillatory thermocapillary convection in a liquid bridge. Part 2. Drop shaft experiments. J. Cryst. Growth 308 (2), 360365.
Schatz, M. F. & Neitzel, G. P. 2001 Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33 (1), 93127.
Schwabe, D. 2005 Hydrothermal waves in a liquid bridge with aspect ratio near the Rayleigh limit under microgravity. Phys. Fluids 17 (11), 112104.
Schwabe, D., Scharmann, A., Preisser, F. & Oeder, R. 1978 Experiments on surface tension driven flow in floating zone melting. J. Cryst. Growth 43 (3), 305312.
Shevtsova, V., Mialdun, A., Kawamura, H., Ueno, I., Nishino, K. & Lappa, M. 2011 Onset of hydrothermal instability in liquid bridge. Experimental benchmark. Fluid Dyn. Mater. Process. 7 (1), 127.
Sim, B. C. & Zebib, A. 2002 Thermocapillary convection in liquid bridges with undeformable curved surfaces. J. Thermophys. Heat Transfer 16 (4), 553561.
Smith, M. K. & Davis, S. H. 1983 Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. J. Fluid Mech. 132, 119144.
Sumner, L. B. S., Neitzel, G. P., Fontaine, J. P. & Dell’Aversana, P. 2001 Oscillatory thermocapillary convection in liquid bridges with highly deformed free surfaces: experiments and energy-stability analysis. Phys. Fluids 13 (1), 107120.
Velten, R., Schwabe, D. & Scharmann, A. 1991 The periodic instability of thermocapillary convection in cylindrical liquid bridges. Phys. Fluids A 3 (2), 267279.
Wang, J., Wu, D., Duan, L. & Kang, Q. 2017 Ground experiment on the instability of buoyant-thermocapillary convection in large-scale liquid bridge with large Prandtl number. Intl J. Heat Mass Transfer 108, 21072119.
Xu, J. J. & Davis, S. H. 1984 Convective thermocapillary instabilities in liquid bridges. Phys. Fluids 27 (5), 11021107.
Xun, B., Li, K. & Hu, W. R. 2010 Effect of volume ratio on thermocapillary flow in liquid bridges of high-Prandtl-number fluids. Phys. Rev. E 81 (3), 036324.
Yano, T. & Nishino, K. 2015 Effect of liquid bridge shape on the oscillatory thermal Marangoni convection. Eur. Phys. J. Special Topics 224 (2), 289298.
Yano, T., Nishino, K., Matsumoto, S., Ueno, I., Komiya, A., Kamotani, Y. & Imaishi, N. 2018 Report on microgravity experiments of dynamic surface deformation effects on Marangoni instability in high-Prandtl-number liquid bridges. Microgravity Sci. Technol. 30 (5), 599610.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

The effects of geometry and heating rate on thermocapillary convection in the liquid bridge

  • Qi Kang (a1) (a2), Di Wu (a1), Li Duan (a1) (a2), Liang Hu (a1), Jia Wang (a1), Pu Zhang (a1) and Wenrui Hu (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.