Skip to main content Accessibility help

The effect of stable thermal stratification on turbulent boundary layer statistics

  • Owen Williams (a1) (a2), Tristen Hohman (a1), Tyler Van Buren (a1), Elie Bou-Zeid (a3) and Alexander J. Smits (a1)...


The effects of stable thermal stratification on turbulent boundary layers are experimentally investigated for smooth and rough walls. For weak to moderate stability, the turbulent stresses are seen to scale with the wall shear stress, compensating for changes in fluid density in the same manner as done for compressible flows. This suggests little change in turbulent structure within this regime. At higher levels of stratification turbulence no longer scales with the wall shear stress and turbulent production by mean shear collapses, but without the preferential damping of near-wall motions observed in previous studies. We suggest that the weakly stable and strongly stable (collapsed) regimes are delineated by the point where the turbulence no longer scales with the local wall shear stress, a significant departure from previous definitions. The critical stratification separating these two regimes closely follows the linear stability analysis of Schlichting (Z. Angew. Math. Mech., vol. 15 (6), 1935, pp. 313–338) for both smooth and rough surfaces, indicating that a good predictor of critical stratification is the gradient Richardson number evaluated at the wall. Wall-normal and shear stresses follow atmospheric trends in the local gradient Richardson number scaling of Sorbjan (Q. J. R. Meteorol. Soc., vol. 136, 2010, pp. 1243–1254), suggesting that much can be learned about stratified atmospheric flows from the study of laboratory scale boundary layers at relatively low Reynolds numbers.


Corresponding author

Email address for correspondence:


Hide All
Adrian, R. J., Meinhart, C. D. & Tomkins, C. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
Arya, S. P. S.1968 Structure of stably stratified turbulent boudary layer. PhD thesis, Colorado State University.
Arya, S. P. S. 1975 Buoyancy effects in a horizontal flat plate boundary layer. J. Fluid Mech. 68, 321343.
Arya, S. P. S. & Plate, E. J. 1969 Modeling of the stably stratified atmospheric boundary layer. J. Atmos. Sci. 26, 656665.
Aubertine, C. D. & Eaton, J. K. 2005 Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient. J. Fluid Mech. 532, 345364.
Blackadar, A. K. 1962 The vertical distribution of wind and turbulent exchange in neutral atmosphere. J. Geophys. Res. 67, 30953103.
Bou-Zeid, E., Higgins, C., Huwald, H., Meneveau, C. & Parlange, M. B. 2010 Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J. Fluid Mech. 665, 480515.
Castillo, L. & George, W. K. 2001 Similarity analysis for turbulent boundary layer with pressure gradient: outer flow. AIAA J. 39 (1), 4147.
Chung, D. & Matheou, G. 2012 Direct numerical simulation of stationary homogeneous stratified sheared turbulence. J. Fluid Mech. 696, 434467.
Clauser, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aero. Sci. 21, 91108.
Connelly, J. S., Schultz, M. P. & Flack, K. A. 2006 Velocity-defect scaling for turbulent boundary layers with a range of relative roughness. Exp. Fluids 40, 188195.
Demarco, G., Puhales, F., Acevedo, O. C., Costa, F. D., Avelar, A. C. & Fisch, G. 2015 Dependence of turbulence-related quantities on the mechanical forcing for wind tunnel stratified flow. Amer. J. Environ. Engng 5 (1A), 1526.
van Driest, E. R. 1951 Turbulent boundary layer in compressible fluids. J. Aero. Sci. 18, 145160.
van Driest, E. R. 1956 On turbulent flow near a wall. J. Aero. Sci. 23, 1007–1011.
Flack, K. A., Schultz, M. P. & Connelly, J. S. 2007 Examination of a critical roughness height for outer layer similarity. Phys. Fluids 19.
Flack, K. A., Schultz, M. P. & Shapiro, T. A. 2005 Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17, 035102.
Flores, O. & Riley, J. J. 2011 Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulation. Boundary-Layer Meteorol. 139, 241259.
Grachev, A., Andrea, E., Fairall, C., Guest, P. & Persson, P. 2008 Turbulent boundary layer measurements in the stable atmospheric boundary layer during SHEBA: ten years after. Acta Geophys. 56 (1), 142166.
Grachev, A., Andreas, E., Fairall, C., Guest, P. & Persson, P. 2007 SHEBA flux-profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol. 124, 315333.
Grachev, A., Andreas, E., Fairall, C., Guest, P. & Persson, P. 2015 Similarity theory based on the Dougherty–Ozmidov length scale. Q. J. R. Meteorol. Soc. 141, 18451856.
Grachev, A., Fairall, C., Persson, P., Andreas, E. & Guest, P. 2005 Stable boundary layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol. 116, 201235.
Hama, F. R. 1954 Boundary-layer characteristics for rough and smooth surfaces. Trans. Soc. Naval Archit. Mar. Engng 62, 333358.
Huang, H. T., Fiedler, H. E. & Wang, J. J 1993 Limitation and improvement of PIV. II – particle image distortion, a novel technique. Exp. Fluids 15, 168174.
Huang, J. & Bou-Zeid, E. 2013 Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: a large-eddy simulation study. J. Atmos. Sci. 70, 15131527.
Jambunathan, K., Ju, X. Y., Dobbins, B. N. & Ashforth-Frost, S. 1995 An improved cross-correlation technique for particle image velocimetry. Meas. Sci. Technol. 6 (5), 507.
Jimenez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Kaimal, J. C., Wyngaard, J., Izumi, Y. & Coté, O. R. 1972 Spectral characteristics of surface layer turbulence. Q. J. R. Meteorol. Soc. 98, 563589.
Katul, G. G., Porporato, A., Shah, S. & Bou-Zeid, E. 2014 Two phenomenological constants explain similarity laws in stably stratified turbulence. Phys. Rev. E 89 (2), 023007.
Li, Q., Bou-Zeid, E., Anderson, W., Grimmond, S. & Hultmark, M. 2016 Quality and reliability of les of convective scalar transfer at high Reynolds numbers. Intl J. Heat Mass Transfer 102, 959970.
Ligrani, P. M. & Moffat, R. J. 1986 Structure of transitional rough and fully rough turbulent boundary layers. J. Fluid Mech. 162, 6998.
Lu, S. S. & Willmarth, W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481.
Mahrt, L. 1998 Stratified atmospheric boundary layers and breakdown of models. J. Theor. Comput. Fluid Dyn. 11, 263279.
Mahrt, L. 2014 Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46, 2345.
McKeon, B. J., Li, J. D., Jiang, W., Morrison, J. F. & Smits, A. J. 2004 Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135147.
Miles, J. W. & Howard, L. N. 1964 Note on heterogenous shear flow. J. Fluid Mech. 20 (2), 331336.
Monin, A. S. & Obukhov, A. M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 151, 163187.
Morkovin, M. V. 1961 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence (ed. Favre, A. J.), pp. 367380. CNRS.
Nicholl, C. I. H. 1970 Some dynamical effects of heat on a turbulent boundary layer. J. Fluid Mech. 40 (2), 361384.
Nieuwstadt, F. T. M. 1984 The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41, 22022216.
Nieuwstadt, F. T. M. 1985 A model for the stationary, stable boundary layer. In Turbulence and Diffusion in Stable Environments (ed. Hunt, J. C. R.), pp. 149179. Clarendon Press, Oxford University Press.
Nikuradse, J.1933 Laws of flow in rough pipes. NACA Tech. Rep. TM 1292.
Nogueira, J., Lecuona, A. & Rodriguez, P. A. 1999 Local field correction PIV: on the increase of accuracy of digital PIV systems. Exp. Fluids 27 (2), 107116.
Ogawa, Y., Diosey, K., Uehara, K. & Ueda, H. 1985 Wind tunnel observation of flow and diffusion under stable stratification. Atmos. Environ. 19, 6574.
Ogawa, Y., Diosey, P. G., Uehara, K. & Ueda, H. 1982 Plume behavior in stratified flows. Atmos. Environ. 16 (6), 14191433.
Ohya, Y. 2001 Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorol. 98, 5782.
Ohya, Y., Neff, D. E. & Meroney, R. N. 1997 Turbulence structure in a stratified boundary layer under stable conditions. Boundary-Layer Meteorol. 83, 139161.
Ohya, Y. & Uchida, T. 2003 Turbulence structure of stable boundary layers with a near-linear temperature profile. Boundary-Layer Meteorol. 108, 1938.
Ohya, Y. & Uchida, T. 2004 Laboratory and numerical studies of the convective boundary layer capped by a strong inversion. Boundary-Layer Meteorol. 112, 223240.
Panton, R. L. 1990 Scaling turbulent wall layers. Trans. ASME J. Fluids Engng 112 (4), 425432.
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37 (2), 383413.
Piat, J.-F. & Hopfinger, E. J. 1981 A boundary layer topped by a density interface. J. Fluid Mech. 113, 411432.
Plate, E. J. & Arya, S. P. S. 1969 Turbulence spectra in a stably stratified boundary layer. Radio Sci. 4 (12), 11631168.
Prasad, A. K., Adrian, R. J., Landreth, C. C. & Offutt, P. W. 1992 Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp. Fluids 13 (2–3), 105116.
Puhales, F. S., Demarco, G., Martins, L. G. N., Acevedo, O. C., Degrazia, G. A., Welter, G. S., Costa, F. D., Fisch, G. F. & Avelar, A. C. 2015 Estimates of turbulent kinetic energy dissipation rate for a stratified flow in a wind tunnel. Physica A 431, 175187.
Scarano, F. 2002 Iterative image deformation methods in PIV. Meas. Sci. Technol. 13 (1), R1R19.
Schlichting, H. 1935 Hauptaufsätze. turbulenz bei wärmeschichtung. Z. Angew. Math. Mech. 15 (6), 313338; (Translation by Cedrick Ansorge, 2014 –
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill.
Schumann, U. & Gerz, T. 1995 Turbulent mixing in stably stratified shear flows. J. Appl. Meteorol. 34 (1), 3348.
Shah, S. K. & Bou-Zeid, E. 2014 Direct numerical simulations of turbulent Ekman layers with increasing static stability: modifications to the bulk structure and second-order statistics. J. Fluid Mech. 760, 494539.
Smits, A. J. & Dussage, J.-P. 2005 Turbulent Shear Layers In Supersonic Flow, 2nd edn. Springer.
Smits, A. J., Matheson, N. & Joubert, P. N. 1983 Low Reynolds number turbulent boundary layers in zero and favourable pressure gradients. J. Ship Res. 27, 147157.
Sorbjan, Z. 2010 Gradient-based scales and similarity laws in the stable boundary layer. Q. J. R. Meteorol. Soc. 136, 12431254.
Sorbjan, Z. 2012 The height correction of similarity functions in the stable boundary layer. Boundary-Layer Meteorol. 142, 1231.
Stull, R. B. 1988 An Introduction to Boundary Layer Meteorology, vol. 13. Springer.
Taylor, G. I. 1931 Effect of variation in density on the stability of superimposed streams of fluid. Proc. R. Soc. Lond. A 132, 499.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flows. Cambridge University Press.
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39 (6), 10961100.
Williams, O. J. H.2014 Density effects on turbulent boundary layer structure: from the atmosphere to hypersonic flow. PhD thesis, Princeton University.
Wu, Y. & Christensen, K. T. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 5576.
Zagarola, M. V. & Smits, A. J. 1998a Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.
Zagarola, M. V. & Smits, A. J.1998b A new mean velocity scaling for turbulent boundary layers. In ASME Paper No. FEDSM98-4950.
Zilitinkevich, S. S., Elperin, T., Kleeorin, N., Rogachevskii, I. & Esau, I. 2013 A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows. Boundary-Layer Meteorol. 146, 341373.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

The effect of stable thermal stratification on turbulent boundary layer statistics

  • Owen Williams (a1) (a2), Tristen Hohman (a1), Tyler Van Buren (a1), Elie Bou-Zeid (a3) and Alexander J. Smits (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.