Skip to main content Accessibility help
×
Home

The effect of magnetic field on perturbation evolution in homogeneously sheared flows

  • Divya Sri Praturi (a1), Diane Collard (a2) and Sharath S. Girimaji (a1) (a3)

Abstract

The goal of this paper is to identify and characterize the fundamental mechanisms that contribute toward flow stabilization in sheared plasma flows. Toward that end, we investigate the evolution of velocity and magnetic field perturbations in homogeneously sheared magnetohydrodynamic (MHD) flows subjected to an imposed streamwise magnetic field. The influences of magnetic field strength ( $B_{0}$ ) and perturbation wavevector orientation ( $\unicode[STIX]{x1D6FD}$ ) are characterized using linear analysis and direct numerical simulations. The linear analysis of ideal MHD indicates that the perturbation evolution is governed by four processes: pressure redistribution, kinetic energy production, kinetic–magnetic energy exchange and magnetic energy production due to magnetic stretching. The interplay between these processes can be characterized by the ratio of shear-to-magnetic timescales ( $R_{A}\equiv V_{A}\unicode[STIX]{x1D705}/S$ ) and $\unicode[STIX]{x1D6FD}$ , where $V_{A}$ , $\unicode[STIX]{x1D705}$ and $S$ are Alfvén wave speed, initial wavenumber and mean flow shear, respectively. For cases with low values of $\boldsymbol{R}_{\boldsymbol{A}}~(\ll \mathbf{1})$ , a three-stage perturbation evolution is seen. At the first stage, pressure redistribution and production dominate leading to hydrodynamic-type behaviour. In the second stage, the onset of magnetic stretching process leads to an increase in magnetic energy. At late stages, production subsides and the dynamics is dominated by harmonic exchange between velocity and magnetic fields. For cases of $\boldsymbol{R}_{\boldsymbol{A}}\approx \mathbf{1}$ , the magnetic field reacts rapidly enough that hydrodynamic and magnetic production stages occur simultaneously followed by harmonic exchange. In the case of $\boldsymbol{R}_{\boldsymbol{A}}\gg 1$ , all three stages occur simultaneously leading to harmonic exchange between kinetic and magnetic energies without any perturbation growth. For all cases considered, the late stage harmonic exchange results in equipartition between perturbation magnetic and kinetic energies. For a given $R_{A}$ , the effect of increasing $\unicode[STIX]{x1D6FD}$ is to reduce the intensity of coupling and progressively slow down the three stages of evolution. For spanwise wavevector perturbations, the velocity–magnetic field interaction mechanism vanishes and there is no effect of pressure or magnetic field on individual velocity components.

Copyright

Corresponding author

Email address for correspondence: divya249@tamu.edu

References

Hide All
Araya, D. B., Ebersohn, F. H., Anderson, S. E. & Girimaji, S. S. 2015 Magneto-gas kinetic method for nonideal magnetohydrodynamic flows: verification protocol and plasma jet simulations. J. Fluids Engng 137 (8), 081302.
Baron, F.1982 Macro-simulation tridimensionnelle d’écoulements turbulents cisailles. PhD thesis, Université Pierre et Marie Curie, Paris.
Batchelor, G. K. & Proudman, I. 1954 The effect of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Maths 7 (1), 83103.
Belle-Hamer, A. L. La, Otto, A. & Lee, L. C. 1994 Magnetic reconnection in the presence of sheared plasma flow: intermediate shock formation. Phys. Plasmas 1 (3), 706713.
Cambon, C., Coleman, G. N. & Mansour, N. N. 1993 Rapid distortion analysis and direct simulation of compressible homogeneous turbulence at finite Mach number. J. Fluid Mech. 257, 641665.
Chagelishvili, G. D., Hristov, T. S., Chanishvili, R. G. & Lominadze, J. G. 1993 Mechanism of energy transformations in shear magnetohydrodynamic flows. Phys. Rev. E 47 (1), 366374.
Chandrasekhar, S. 1961 Hydrodynamic and Hydrodynamic Stability. Oxford University Press.
Chatterjee, D., Chatterjee, K. & Mondal, B. 2012 Control of flow separation around bluff obstacles by transverse magnetic field. J. Fluids Engng 134 (9), 091102.
Diaz, F. R. C. 2000 The VASIMR rocket. Sci. Am. 283 (5), 9097.
Dimitrov, Z. D., Maneva, Y. G., Hristov, T. S. & Mishonov, T. M. 2011 Over-reflection of slow magnetosonic waves by homogeneous shear flow: analytical solution. Phys. Plasmas 18 (8), 082110.
Faganello, M., Califano, F. & Pegoraro, F. 2008 Time window for magnetic reconnection in plasma configurations with velocity shear. Phys. Rev. Lett. 101 (17), 175003.
Goossens, M. 2012 An Introduction to Plasma Astrophysics and Magnetohydrodynamics, vol. 294. Springer Science & Business Media.
Herault, J., Rincon, F., Cossu, C., Lesur, G., Ogilvie, G. I. & Longaretti, P. Y. 2011 Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows. Phys. Rev. E 84 (3), 036321.
Karimi, M. & Girimaji, S. S. 2016 Suppression mechanism of Kelvin–Helmholtz instability in compressible fluid flows. Phys. Rev. E 93 (4), 041102.
Karimi, M. & Girimaji, S. S. 2017 Influence of orientation on small perturbation evolution in compressible shear layers with the inflection point. Phys. Rev. E 95 (3), 033112.
Kirillov, O. N., Stefani, F. & Fukumoto, Y. 2014 Local instabilities in magnetized rotational flows: a short-wavelength approach. J. Fluid Mech. 760, 591633.
Kumar, G., Bertsch, R. L. & Girimaji, S. S. 2014 Stabilizing action of pressure in homogeneous compressible shear flows: effect of Mach number and perturbation obliqueness. J. Fluid Mech. 760, 540566.
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2), 243251.
Lau, Y. Y. & Liu, C. S. 1980 Stability of shear flow in a magnetized plasma. Phys. Fluids 23 (5), 939941.
Lerner, J. & Knobloch, E. 1985 The stability of dissipative magnetohydrodynamic shear flow in a parallel magnetic field. Geophys. Astrophys. Fluid Dyn. 33 (1–4), 295314.
Li, L.-X. 2002 Jet collimation by small-scale magnetic fields. Astrophys. J. 564 (1), 108112.
Livio, M. 1999 Astrophysical jets: a phenomenological examination of acceleration and collimation. Phys. Rep. 311 (3), 225245.
McWilliams, J. C. 2012 The elemental shear dynamo. J. Fluid Mech. 699, 414452.
Mikellides, P. G., Turchi, P. J. & Roderick, N. F. 2000 Applied-field magnetoplasmadynamic thrusters. Part 1. Numerical simulations using the MACH2 code. J. Propul. Power 16 (5), 887893.
Miura, A. & Pritchett, P. L. 1982 Nonlocal stability analysis of the MHD Kelvin–Helmholtz instability in a compressible plasma. J. Geophys. Res. 87 (A9), 74317444.
Olsen, C. S., Ballenger, M. G., Carter, M. D., Díaz, F. R. C., Giambusso, M., Glover, T. W., Ilin, A. V., Squire, J. P., Longmier, B. W., Bering, E. A. III & Cloutier, P. A. 2013 An experimental study of plasma detachment from a magnetic nozzle in the plume of the VASIMR® engine. In Proceedings of the 33rd International Electric Propulsion Conference, Electric Rocket Propulsion Society.
Pope, S. B. 2001 Turbulent Flows. IOP Publishing.
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 81315.
Samtaney, R. 2003 Suppression of the Richtmyer–Meshkov instability in the presence of a magnetic field. Phys. Fluids 15 (8), L53L56.
Sarkar, S., Erlebacher, G., Hussaini, M. Y. & Kreiss, H. O. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.
Simone, A., Coleman, G. & Cambon, C. 1997 The effect of compressibility on turbulent shear flow: a rapid distortion-theory and direct numerical-simulation study. J. Fluid Mech. 330, 307338.
Taylor, G. I. & Batchelor, G. K. 1949 The effect of wire gauze on small disturbances in a uniform stream. Q. J. Mech. Appl. Maths 2 (1), 129.
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.
Xie, Z. & Girimaji, S. S. 2014 Instability of Poiseuille flow at extreme Mach numbers: linear analysis and simulations. Phys. Rev. E 89 (4), 043001.
Zaqarashvili, T. V. 1997 On a possible generation mechanism of a solar cycle. Astrophys. J. 487 (2), 930935.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed