Skip to main content Accessibility help
×
Home

Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel

  • J.-P. Mollicone (a1), F. Battista (a1), P. Gualtieri (a1) and C. M. Casciola (a1)

Abstract

Turbulent flow separation induced by a protuberance on one of the walls of an otherwise planar channel is investigated using direct numerical simulations. Different bulge geometries and Reynolds numbers – with the highest friction Reynolds number simulation reaching a peak of $Re_{\unicode[STIX]{x1D70F}}=900$ – are addressed to understand the effect of the wall curvature and of the Reynolds number on the dynamics of the recirculating bubble behind the bump. Global quantities reveal that most of the drag is due to the form contribution, whilst the friction contribution does not change appreciably with respect to an equivalent planar channel flow. The size and position of the separation bubble strongly depends on the bump shape and the Reynolds number. The most bluff geometry has a larger recirculation region, whilst the Reynolds number increase results in a smaller recirculation bubble and a shear layer more attached to the bump. The position of the reattachment point only depends on the Reynolds number, in agreement with experimental data available in the literature. Both the mean and the turbulent kinetic energy equations are addressed in such non-homogeneous conditions revealing a non-trivial behaviour of the energy fluxes. The energy introduced by the pressure drop follows two routes: part of it is transferred towards the walls to be dissipated and part feeds the turbulent production hence the velocity fluctuations in the separating shear layer. Spatial energy fluxes transfer the kinetic energy into the recirculation bubble and downstream near the wall where it is ultimately dissipated. Consistently, anisotropy concentrates at small scales near the walls irrespective of the value of the Reynolds number. In the bulk flow and in the recirculation bubble, isotropy is restored at small scales and the isotropy recovery rate is controlled by the Reynolds number. Anisotropy invariant maps are presented, showing the difficulty in developing suitable turbulence models to predict separated turbulent flow dynamics. Results shed light on the processes of production, transfer and dissipation of energy in this relatively complex turbulent flow where non-homogeneous effects overwhelm the classical picture of wall-bounded turbulent flows which typically exploits streamwise homogeneity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Email address for correspondence: carlomassimo.casciola@uniroma1.it

References

Hide All
Alam, M. & Sandham, N. D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 403, 223250.
Antonia, R. A., Djenidi, L. & Spalart, P. R. 1994 Anisotropy of the dissipation tensor in a turbulent boundary layer. Phys. Fluids 6 (7), 24752479.
Bai, H. L., Zhou, Y., Zhang, W. G., Xu, S. J., Wang, Y. & Antonia, R. A. 2014 Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316354.
Breuer, M., Peller, N., Rapp, Ch. & Manhart, M. 2009 Flow over periodic hills–numerical and experimental study in a wide range of Reynolds numbers. Computers Fluids 38 (2), 433457.
Casciola, C. M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale-by-scale budget and similarity laws for shear turbulence. J. Fluid Mech. 476, 105114.
Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2007 The residual anisotropy at small scales in high shear turbulence. Phys. Fluids 19 (10), 101704.
Castro, I. P. & Epik, E. 1998 Boundary layer development after a separated region. J. Fluid Mech. 374, 91116.
Chen, J., Meneveau, C. & Katz, J. 2006 Scale interactions of turbulence subjected to a straining–relaxation–destraining cycle. J. Fluid Mech. 562, 123150.
Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence structures of wall-bounded shear flows found using DNS data. J. Fluid Mech. 357, 225247.
Cimarelli, A., De Angelis, E. & Casciola, C. M. 2013 Paths of energy in turbulent channel flows. J. Fluid Mech. 715, 436451.
Corrsin, Stanley 1958 Local Isotropy in Turbulent Shear Flow. National Advisory Committee for Aeronautics.
Dengel, P. & Fernholz, H. H. 1990 An experimental investigation of an incompressible turbulent boundary layer in the vicinity of separation. J. Fluid Mech. 212, 615636.
Diosady, L. T. & Murman, S. M. 2014 Dns of flows over periodic hills using a discontinuous galerkin spectral-element method. AIAA Paper 2014-2784.
Elsberry, K., Loeffler, J., Zhou, M. D. & Wygnanski, I. 2000 An experimental study of a boundary layer that is maintained on the verge of separation. J. Fluid Mech. 423, 227261.
Epstein, F. H. & Ross, R. 1999 Atherosclerosis – an inflammatory disease. New England J. Med. 340 (2), 115126.
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 nek5000 web page. Web page http://nek5000mcs.anl.gov.
Fröhlich, J., Mellen, C. P., Rodi, W., Temmerman, L. & Leschziner, M. A. 2005 Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 1966.
Gatski, T. B. & Speziale, C. G. 1993 On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 5978.
Gilbert, N. & Kleiser, L. 1991 Turbulence model testing with the aid of direct numerical simulation results. In 8th Symposium on Turbulent Shear Flows (ed. Braza, M. & Nogues, G.), vol. 2, p. 26-1. Springer.
Gualtieri, P., Casciola, C. M., Benzi, R. & Piva, R. 2007 Preservation of statistical properties in large-eddy simulation of shear turbulence. J. Fluid Mech. 592, 471494.
Gualtieri, P. & Meneveau, C. 2010 Direct numerical simulations of turbulence subjected to a straining and destraining cycle. Phys. Fluids 22 (6), 065104.
Harun, Z., Monty, J. P., Mathis, R. & Marusic, I. 2013 Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477498.
Hickel, S., Kempe, T. & Adams, N. A. 2008 Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions. Theor. Comput. Fluid Dyn. 22 (3–4), 227242.
Jacob, B., Casciola, C. M., Talamelli, A. & Alfredsson, P. H. 2008 Scaling of mixed structure functions in turbulent boundary layers. Phys. Fluids 20 (4), 045101.
Jovanovic, J. 2013 The Statistical Dynamics of Turbulence. Springer Science & Business Media.
Jovičić, N., Breuer, M. & Jovanović, J. 2006 Anisotropy-invariant mapping of turbulence in a flow past an unswept airfoil at high angle of attack. J. Fluids Engng 128 (3), 559567.
Kähler, C. J., Scharnowski, S. & Cierpka, C. 2016 Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 796, 257284.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Krogstad, P. A. & Skaare, P. E. 1995 Influence of the strong adverse pressure gradient on the turbulent structure in a boundary layer. Phys. Fluids 7 (8), 20142024.
Kuban, L., Laval, J.-P., Elsner, W., Tyliszczak, A. & Marquillie, M. 2012 Les modeling of converging-diverging turbulent channel flow. J. Turbul. 13, N11.
Kumar, V., Frohnapfel, B., Jovanović, J., Breuer, M., Zuo, W., Hadzić, I. & Lechner, R. 2009 Anisotropy invariant Reynolds stress model of turbulence (airsm) and its application to attached and separated wall-bounded flows. Flow Turbul. Combust. 83 (1), 81103.
Laval, J.-P., Marquillie, M. & Ehrenstein, U. 2012 On the relation between kinetic energy production in adverse-pressure gradient wall turbulence and streak instability. J. Turbul. 13, N21.
Le, H., Moin, P. & Kim, J. 1997 Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349374.
Lee, M. J., Kim, J. & Moin, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561583.
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to re 𝜏 = 4200. Phys. Fluids 26 (1), 011702.
Lumley, J. L. 1979 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.
Lumley, J. L. & Newman, G. R. 1977 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82 (01), 161178.
Marati, N., Casciola, C. M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521, 191215.
Marquillie, M., Ehrenstein, U. & Laval, J.-P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.
Marquillie, M. & Ehrenstein, U. W. E. 2003 On the onset of nonlinear oscillations in a separating boundary-layer flow. J. Fluid Mech. 490, 169188.
Marquillie, M., Laval, J.-P. & Dolganov, R. 2008 Direct numerical simulation of a separated channel flow with a smooth profile. J. Turbul. 9, N1.
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
Marusic, I., Talluru, K. M. & Hutchins, N. 2014 Controlling the large-scale motions in a turbulent boundary layer. In Fluid-Structure-Sound Interactions and Control, pp. 1726. Springer.
Mellen, C. P., Frölich, J. & Rodi, W. 2000 Large eddy simulations of the flow over periodic hills. In IMACS World Congress (ed. Deville, M. & Owens, R.), EPFL.
Na, Y. & Moin, P. 1998a Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.
Na, Y. & Moin, P. 1998b The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 377, 347373.
Nagib, H. M. & Chauhan, K. A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20 (10), 1518.
Neumann, J. & Wengle, H. 2004 Coherent structures in controlled separated flow over sharp-edged and rounded steps. J. Turbul. 5 (22), 14.
Ohlsson, J., Schlatter, P., Fischer, P. F. & Henningson, D. S. 2010 Direct numerical simulation of separated flow in a three-dimensional diffuser. J. Fluid Mech. 650, 307318.
Patera, A. T. 1984 A spectral element method for fluid dynamics. J. Comput. Phys. 54, 468488.
Peller, N. & Manhart, M. 2006 Turbulent channel flow with periodic hill constrictions. In New Results in Numerical and Experimental Fluid Mechanics V, pp. 504512. Springer.
Pumir, A., Xu, H. & Siggia, E. D. 2016 Small-scale anisotropy in turbulent boundary layers. J. Fluid Mech. 804, 523.
Rapp, Ch. & Manhart, M. 2011 Flow over periodic hills: an experimental study. Exp. Fluids 51 (1), 247269.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.
Šarić, S., Jakirlić, S., Breuer, M., Jaffrézic, B., Deng, G., Chikhaoui, O., Fröhlich, J., Von Terzi, D., Manhart, M. & Peller, N. 2007 Evaluation of detached eddy simulations for predicting the flow over periodic hills. In ESAIM: Proceedings, vol. 16, pp. 133145. EDP Sciences.
Simpson, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205232.
Skaare, P. E. & Krogstad, P. A. 1994 A turbulent equilibrium boundary layer near separation. J. Fluid Mech. 272, 319348.
Skote, M. & Henningson, D. S. 2002 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 471, 107136.
Skote, M., Henningson, D. S. & Henkes, R. A. W. M. 1998 Direct numerical simulation of self-similar turbulent boundary layers in adverse pressure gradients. Flow Turbul. Combust. 60 (1), 4785.
Soria, J., Kitsios, V., Atkinson, C., Sillero, J. A., Borrell, G., Gungar, A. G. & Jimenez, J. 2017 Towards the direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer flow. In Whither Turbulence and Big Data in the 21st Century?, pp. 6175. Springer.
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to r𝜃 = 1410. J. Fluid Mech. 187, 6198.
Spalart, P. R. & Watmuff, J. H. 1993 Experimental and numerical investigation of a turbulent boundary layer with pressure gradients. J. Fluid Mech. 249, 337371.
Speziale, C. G. 1991 Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 23 (1), 107157.
Temmerman, L., Leschziner, M. A., Mellen, C. P. & Fröhlich, J. 2003 Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. Intl J. Heat Fluid Flow 24 (2), 157180.
Van Dyke, M. 1982 An Album of Fluid Motion. Parabolic.
Webster, D. R., Degraaff, D. B. & Eaton, J. K. 1996 Turbulence characteristics of a boundary layer over a two-dimensional bump. J. Fluid Mech. 320, 5369.
Wilcox, D. C. 1998 Turbulence Modeling for CFD, vol. 2. DCW industries La Canada, CA.
Wu, X. & Squires, K. D. 1998 Numerical investigation of the turbulent boundary layer over a bump. J. Fluid Mech. 362, 229271.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel

  • J.-P. Mollicone (a1), F. Battista (a1), P. Gualtieri (a1) and C. M. Casciola (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.