Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T13:54:23.491Z Has data issue: false hasContentIssue false

Effect of cone rotation on the nonlinear evolution of Mack modes in supersonic boundary layers

Published online by Cambridge University Press:  12 September 2023

Runjie Song
Affiliation:
State Key laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
Ming Dong*
Affiliation:
State Key laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China Sino-Russian Mathematics Center, Peking University, Beijing 100871, PR China
Lei Zhao*
Affiliation:
Department of Mechanics, Tianjin University, Tianjin, 300072, PR China
*
Email addresses for correspondence: dongming@imech.ac.cn, lei_zhao@tju.edu.cn
Email addresses for correspondence: dongming@imech.ac.cn, lei_zhao@tju.edu.cn

Abstract

In this paper, we present a systematic study of the nonlinear evolution of the travelling Mack modes in a Mach 3 supersonic boundary layer over a rotating cone with a $7^{\circ }$ half-apex angle using the nonlinear parabolic stability equation (NPSE). To quantify the effect of cone rotation, six cases with different rotation rates are considered, and from the same streamwise position, a pair of oblique Mack modes with the same frequency but opposite circumferential wavenumbers are introduced as the initial perturbations for NPSE calculations. As the angular rotation rate $\varOmega$ increases such that $\bar \varOmega$ (defined as the ratio of the rotation speed of the cone to the streamwise velocity at the boundary-layer edge) varies from 0 to $O(1)$, three distinguished nonlinear regimes appear, namely the oblique-mode breakdown, the generalised fundamental resonance and the centrifugal-instability-induced transition. For each regime, the mechanisms for the amplifications of the streak mode and the harmonic travelling waves are explained in detail, and the dominant role of the streak mode in triggering the breakdown of the laminar flow is particularly highlighted. Additionally, from the linear stability theory, the dominant travelling mode undergoes the greatest amplification for a moderate $\varOmega$, which, according to the $e^N$ transition-prediction method, indicates premature transition to turbulence. However, this is in contrast to the NPSE results, in which a delay of the transition onset is observed for a moderate $\varOmega$. Such a disagreement is attributed to the different nonlinear regimes appearing for different rotation rates. Therefore, the traditional transition-prediction method based on the linear instability should be carefully employed if multiple nonlinear regimes may appear.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balakumar, P. 2009 Stability of supersonic boundary layers on a cone at an angle of attack. In 39th AIAA Fluid Dynamics Conference, San Antonio, TX, USA, AIAA Paper 2009-3555. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Bertolotti, F.P., Herbert, T. & Spalart, P.R. 1992 Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441474.CrossRefGoogle Scholar
Brad, W., Thomas, J., Dennis, B., Chou, A., Peter, G., Casper, K., Laura, S., Schneider, S. & Johnson, H. 2009 Instability and transition measurements in the Mach-6 Quiet Tunnel. In 39th AIAA Fluid Dynamics Conference, San Antonio, TX, USA, AIAA Paper 2009-3559. American Institute of Aeronautics and Astronautics.Google Scholar
Chang, C. & Malik, M.R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.CrossRefGoogle Scholar
Chen, X., Zhu, Y. & Lee, C. 2017 Interactions between second mode and low-frequency waves in a hypersonic boundary layer. J. Fluid Mech. 820, 693735.CrossRefGoogle Scholar
Chou, A., Ward, C., Letterman, L., Schneider, S., Luersen, R. & Borg, M. 2011 Transition research with temperature-sensitive paints in the Boeing/AFOSR Mach-6 quiet tunnel. In 41st AIAA Fluid Dynamics Conference and Exhibit, Honolulu, HI, USA, AIAA Paper 2011-3872. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Chynoweth, B., Schneider, S., Hader, C., Fasel, H.F., Batista, A., Kuehl, J., Juliano, T. & Wheaton, B. 2019 History and progress of boundary-layer transition on a Mach-6 flared cone. J. Spacecr. Rockets 56 (2), 333346.CrossRefGoogle Scholar
Cowley, S. & Hall, P. 1990 On the instability of hypersonic flow past a wedge. J. Fluid Mech. 214, 1742.CrossRefGoogle Scholar
Craig, S.A. & Saric, W.S. 2016 Crossflow instability in a hypersonic boundary layer. J. Fluid Mech. 808, 224244.CrossRefGoogle Scholar
Craik, A. 1971 Non-linear resonant instability in boundary layers. J. Fluid Mech. 50 (2), 393413.CrossRefGoogle Scholar
Dong, M., Liu, Y. & Wu, X. 2020 Receptivity of inviscid modes in supersonic boundary layers due to scattering of free-stream sound by localised wall roughness. J. Fluid Mech. 896, A23.CrossRefGoogle Scholar
Dong, M., Zhang, Y. & Zhou, H. 2008 A new method for computing laminar-turbulent transition and turbulence in compressible boundary layers-PSE+DNS. Appl. Math. Mech. 29, 15271534.CrossRefGoogle Scholar
Dong, M. & Zhao, L. 2021 An asymptotic theory of the roughness impact on inviscid Mack modes in supersonic/hypersonic boundary layers. J. Fluid Mech. 913, A22.CrossRefGoogle Scholar
Fasel, H.F., Thumm, A. & Bestek, H. 1993 Direct numerical simulation of transition in supersonic boundary layers: oblique breakdown. In Transitional and Turbulent Compressible Flows (ed. L.D. Kral & T.A. Zang), pp. 77–92. ASME.Google Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Franko, K.J. & Lele, S.K. 2013 Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers. J. Fluid Mech. 730, 491532.CrossRefGoogle Scholar
Gajjar, J.S.B. 2007 Nonlinear critical layers in the boundary layer on a rotating disk. J. Engng Maths 57, 205217.CrossRefGoogle Scholar
Garrett, S.J., Hussain, Z. & Stephen, S.O. 2009 The cross-flow instability of the boundary layer on a rotating cone. J. Fluid Mech. 622, 209232.CrossRefGoogle Scholar
Garrett, S.J., Hussain, Z. & Stephen, S.O. 2010 Boundary-layer transition on broad cones rotating in an imposed axial flow. AIAA J. 48 (6), 11841194.CrossRefGoogle Scholar
Garrett, S.J. & Peake, N. 2007 The absolute instability of the boundary layer on a rotating cone. Eur. J. Mech. B/Fluids 26 (3), 344353.CrossRefGoogle Scholar
Gregory, N., Stuart, J.T., Walker, W.S. & Bullard, E.C. 1955 On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Phil. Trans. R. Soc. Lond. A 248 (943), 155199.Google Scholar
Hader, C. & Fasel, H.F. 2019 Direct numerical simulations of hypersonic boundary-layer transition for a flared cone: fundamental breakdown. J. Fluid Mech. 869, 341384.CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2021 Direct numerical simulations of hypersonic boundary-layer transition for a straight cone at Mach 4: Oblique Breakdown. In AIAA Aviation 2021 Forum, AIAA Paper 2021-2863. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Hall, P. 1986 An asymptotic investigation of the stationary modes of instability of the boundary layer on a rotating disc. Proc. R. Soc. Lond. A 406 (1830), 93106.Google Scholar
Han, L., Yuan, J., Dong, M. & Fan, Z. 2021 Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh–Taylor instability with a diffuse interface. Phys. Rev. E 104, 035108.CrossRefGoogle ScholarPubMed
Hartman, A.B., Hader, C. & Fasel, H.F. 2021 Nonlinear transition mechanism on a blunt cone at Mach 6: oblique breakdown. J. Fluid Mech. 915, R2.CrossRefGoogle Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20 (1), 487526.CrossRefGoogle Scholar
Hussain, Z., Garrett, S.J. & Stephen, S.O. 2014 The centrifugal instability of the boundary-layer flow over slender rotating cones. J. Fluid Mech. 755, 274293.CrossRefGoogle Scholar
Hussain, Z., Garrett, S.J., Stephen, S.O. & Griffiths, P.T. 2016 The centrifugal instability of the boundary-layer flow over a slender rotating cone in an enforced axial free stream. J. Fluid Mech. 788, 7094.CrossRefGoogle Scholar
Kachanov, Y.S. 1994 Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26 (1), 411482.CrossRefGoogle Scholar
Kato, K., Segalini, A., Alfredsson, P.H. & Lingwood, R.J. 2021 Instability and transition in the boundary layer driven by a rotating slender cone. J. Fluid Mech. 915, R4.CrossRefGoogle Scholar
Klatt, D., Hruschka, R. & Leopold, F. 2012 Numerical and experimental investigation of the Magnus effect in supersonic flows. In 30th AIAA Applied Aerodynamics Conference, New Orleans, LA, USA, AIAA paper 2012-3230. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Kobayashi, R. 1994 Review: laminar-to-turbulent transition of three-dimensional boundary layers on rotating bodies. J. Fluids Engng 116 (2), 200211.CrossRefGoogle Scholar
Kobayashi, R. & Izumi, H. 1983 Boundary-layer transition on a rotating cone in still fluid. J. Fluid Mech. 127, 353364.CrossRefGoogle Scholar
Kobayashi, R., Kohama, Y., Arai, T. & Ukaku, M. 1987 The boundary-layer transition on rotating cones in axial flow with free-stream turbulence: fluids engineering. JSME Intl J. 30 (261), 423429.CrossRefGoogle Scholar
Kobayashi, R., Kohama, Y. & Kurosawa, M. 1983 Boundary-layer transition on a rotating cone in axial flow. J. Fluid Mech. 127, 341352.CrossRefGoogle Scholar
Kobayashi, R., Kohama, Y. & Takamadate, C. 1980 Spiral vortices in boundary layer transition regime on a rotating disk. Acta Mechanica 35, 7182.CrossRefGoogle Scholar
Kosinov, A.D., Maslov, A.A. & Shevelkov, S.G. 1990 Experiments on the stability of supersonic laminar boundary layers. J. Fluid Mech. 219, 621633.CrossRefGoogle Scholar
Kosinov, A.D., Semionov, N.V., Shevel'kov, S.G. & Zinin, O.I. 1994 Experiments on the nonlinear instability of supersonic boundary layers. In Nonlinear Instability of Nonparallel Flows (ed. S.P. Lin, W.R.C. Phillips & D.T. Valentine), pp. 196–205. Springer.CrossRefGoogle Scholar
Kosinov, A.D. & Tumin, A. 1996 Resonance interaction of wave trains in supersonic boundary layer. In IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers (ed. P.W. Duck & P. Hall), pp. 379–388. Springer.CrossRefGoogle Scholar
Lingwood, R.J. 1995 Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech. 299, 1733.CrossRefGoogle Scholar
Lingwood, R.J. 1996 An experimental study of absolute instability of the rotating-disk boundary-layer flow. J. Fluid Mech. 314, 373405.CrossRefGoogle Scholar
Liu, Y., Dong, M. & Wu, X. 2020 Generation of first Mack modes in supersonic boundary layers by slow acoustic waves interacting with streamwise isolated wall roughness. J. Fluid Mech. 888, A10.CrossRefGoogle Scholar
Mack, L.M. 1987 Review of linear compressible stability theory. In Stability of Time Dependent and Spatially Varying Flows (ed. D.L. Dwoyer & M.Y. Hussaini), pp. 164–187.Google Scholar
Malik, M.R. 1986 The neutral curve for stationary disturbances in rotating-disk flow. J. Fluid Mech. 164, 275287.CrossRefGoogle Scholar
Malik, M.R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86 (2), 376413.CrossRefGoogle Scholar
Maseev, L.M. 1968 Occurrence of three-dimensional perturbations in a boundary layer. Fluid Dyn. 3, 2324.CrossRefGoogle Scholar
Mayer, C.S.J., Fasel, H.F., Choudhari, M. & Chang, C. 2014 Transition onset predictions for oblique breakdown in a Mach 3 boundary layer. AIAA J. 52 (4), 882886.CrossRefGoogle Scholar
Mayer, C.S.J., Von Terzi, D.A. & Fasel, H.F. 2011 a Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 542.CrossRefGoogle Scholar
Mayer, C.S.J., Wernz, S. & Fasel, H.F. 2011 b Numerical investigation of the nonlinear transition regime in a Mach 2 boundary layer. J. Fluid Mech. 668, 113149.CrossRefGoogle Scholar
Ng, L. & Erlebacher, G. 1992 Secondary instabilities in compressible boundary layers. Phys. Fluids 4 (4), 710726.CrossRefGoogle Scholar
Reed, H.L. & Saric, W.S. 1989 Stability of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 21 (1), 235284.CrossRefGoogle Scholar
Reed, H.L., Saric, W.S. & Arnal, D. 1996 Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28 (1), 389428.CrossRefGoogle Scholar
Saric, W., Kozlov, V.V. & Levchenko, V.Y. 1984 Forced and unforced subharmonic resonance in boundary-layer transition. In 22nd AIAA Aerospace Sciences Meeting, Reno, NV, USA, AIAA Paper 1984-0007. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Saric, W.S., Reed, H.L. & White, E.B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35 (1), 413440.CrossRefGoogle Scholar
Schubauer, G.B. & Skramstad, H.K. 1943 Laminar-boundary-layer oscillations and transition on a flat platek. NACA Tech. Memo. NACA-TR-909.Google Scholar
Schuele, C.Y., Corke, T.C. & Matlis, E. 2013 Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness. J. Fluid Mech. 718, 538.CrossRefGoogle Scholar
Sims, J.L. 1964 Tables for supersonic flow around right circular cones at zero angle of attack. NACA Tech. Memo. NASA-SP-3004.Google Scholar
Sivasubramanian, J. & Fasel, H.F. 2015 Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown. J. Fluid Mech. 768, 175218.CrossRefGoogle Scholar
Smith, F.T. 1989 On the first-mode instability in subsonic, supersonic or hypersonic boundary layers. J. Fluid Mech. 198, 127153.CrossRefGoogle Scholar
Smith, F.T. & Brown, S.N. 1990 The inviscid instability of a Blasius boundary layer at large values of the Mach number. J. Fluid Mech. 219, 499518.CrossRefGoogle Scholar
Song, R. & Dong, M. 2023 Linear instability of a supersonic boundary layer over a rotating cone. J. Fluid Mech. 955, A31.CrossRefGoogle Scholar
Song, R., Dong, M. & Zhao, L. 2022 Revisit of the oblique-breakdown regime in supersonic boundary layers and mechanism of the extra amplification of streak modes. Phys. Fluids 34 (10), 104110.CrossRefGoogle Scholar
Song, R., Zhao, L. & Huang, Z. 2020 Secondary instability of stationary Görtler vortices originating from first/second Mack mode. Phys. Fluids 32 (3), 034109.CrossRefGoogle Scholar
Stuart, J.T. 1958 On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4 (1), 121.CrossRefGoogle Scholar
Stuart, J.T. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9 (3), 353370.CrossRefGoogle Scholar
Sturek, W.B., Dwyer, H.A., Kayser, L.D., Nietubicz, C.J., Reklis, R.P. & Opalka, K.O. 1978 Computations of Magnus effects for a yawed, spinning body of revolution. AIAA J. 16 (7), 687692.CrossRefGoogle Scholar
Tambe, S., Schrijer, F., Gangoli, A.R. & Veldhuis, L. 2021 Boundary layer instability over a rotating slender cone under non-axial inflow. J. Fluid Mech. 910, A25.CrossRefGoogle Scholar
Tambe, S., Schrijer, F., Veldhuis, L. & Gangoli, R. 2022 Spiral instability modes on rotating cones in high-Reynolds number axial flow. Phys. Fluids 34 (3), 034109.CrossRefGoogle Scholar
Thumm, A. 1991 Numerische untersuchungen zum laminar-turbulenten strömungsumschlag in transsonischen grenzschichtströmungen. PhD thesis, Universität Stuttgart.Google Scholar
Towers, P.D. & Garrett, S.J. 2012 On the stability of the compressible boundary-layer flow over a rotating cone. In 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, LA, USA, AIAA Paper 2012-2693. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Towers, P.D. & Garrett, S.J. 2016 Similarity solutions of compressible flow over a rotating cone with surface suction. Therm. Sci. 20 (2), 517528.CrossRefGoogle Scholar
Towers, P.T. 2013 The stability and transition of the compressible boundary-layer flow over broad rotating cones. PhD thesis, University of Leicester.CrossRefGoogle Scholar
Turkyilmazoglu, M. 2005 Lower branch modes of the compressible boundary layer flow due to a rotating-disk. Stud. Appl. Maths 114 (1), 1743.CrossRefGoogle Scholar
Turkyilmazoglu, M. 2007 Non-linear and non-stationary modes of the lower branch of the incompressible boundary layer flow due to a rotating disk. Q. Appl. Maths 65, 4368.CrossRefGoogle Scholar
Turkyilmazoglu, M., Cole, J.W. & Gajjar, J.S.B. 2000 Absolute and convective instabilities in the compressible boundary layer on a rotating disk. Theor. Comput. Fluid Dyn. 14, 2137.CrossRefGoogle Scholar
Watson, J. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow. J. Fluid Mech. 9 (3), 371389.CrossRefGoogle Scholar
Wu, X. 2004 Non-equilibrium, nonlinear critical layers in laminar-turbulent transition. Acta Mechanica Sin. 20 (4), 327339.Google Scholar
Wu, X., Luo, J. & Yu, M. 2016 Transition route of Klebanoff type in hypersonic boundary layers. In 46th AIAA Fluid Dynamics Conference, Washington, DC, USA, AIAA Paper 2016-3953. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Xu, J., Liu, J., Mughal, S., Yu, P. & Bai, J. 2020 Secondary instability of Mack mode disturbances in hypersonic boundary layers over micro-porous surface. Phys. Fluids 32 (4), 044105.CrossRefGoogle Scholar
Zhang, Y. & Zhou, H. 2008 PSE as applied to problems of transition in compressible boundary layers. Appl. Math. Mech. 29, 833840.CrossRefGoogle Scholar
Zhang, Z. & Wu, X. 2022 Generation of sound waves by nonlinearly evolving ring-mode coherent structures on a turbulent subsonic circular jet: a comparative study of two mechanisms. Acta Mechanica Sin. 39 (3), 322272.CrossRefGoogle Scholar
Zhao, L., Dong, M. & Yang, Y. 2019 Harmonic linearized Navier–Stokes equation on describing the effect of surface roughness on hypersonic boundary-layer transition. Phys. Fluids 31 (3), 034108.CrossRefGoogle Scholar
Zhao, L., He, J. & Dong, M. 2023 Asymptotic theory of Mack-mode receptivity in hypersonic boundary layers due to interaction of a heating/cooling source and a freestream sound wave. J. Fluid Mech. 963, A34.CrossRefGoogle Scholar
Zhao, L., Zhang, C., Liu, J. & Luo, J. 2016 Improved algorithm for solving nonlinear parabolized stability equations. Chin. Phys. B 25 (8), 84701.CrossRefGoogle Scholar
Zhong, X. & Ma, Y. 2006 Boundary-layer receptivity of Mach 7.99 flow over a blunt cone to free-stream acoustic waves. J. Fluid Mech. 556, 55103.CrossRefGoogle Scholar
Zhong, X. & Wang, X. 2012 Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44 (1), 527561.CrossRefGoogle Scholar