Skip to main content Accessibility help
×
Home

Effect of an internal nonlinear rotational dissipative element on vortex shedding and vortex-induced vibration of a sprung circular cylinder

  • Ravi Kumar R. Tumkur (a1), Arne J. Pearlstein (a2), Arif Masud (a3), Oleg V. Gendelman (a4), Antoine B. Blanchard (a1), Lawrence A. Bergman (a1) and Alexander F. Vakakis (a2)...

Abstract

We computationally investigate coupling of a nonlinear rotational dissipative element to a sprung circular cylinder allowed to undergo transverse vortex-induced vibration (VIV) in an incompressible flow. The dissipative element is a ‘nonlinear energy sink’ (NES), consisting of a mass rotating at fixed radius about the cylinder axis and a linear viscous damper that dissipates energy from the motion of the rotating mass. We consider the Reynolds number range $20\leqslant Re\leqslant 120$ , with $Re$ based on cylinder diameter and free-stream velocity, and the cylinder restricted to rectilinear motion transverse to the mean flow. Interaction of this NES with the flow is mediated by the cylinder, whose rectilinear motion is mechanically linked to rotational motion of the NES mass through nonlinear inertial coupling. The rotational NES provides significant ‘passive’ suppression of VIV. Beyond suppression however, the rotational NES gives rise to a range of qualitatively new behaviours not found in transverse VIV of a sprung cylinder without an NES, or one with a ‘rectilinear NES’, considered previously. Specifically, the NES can either stabilize or destabilize the steady, symmetric, motionless-cylinder solution and can induce conditions under which suppression of VIV (and concomitant reduction in lift and drag) is accompanied by a greatly elongated region of attached vorticity in the wake, as well as conditions in which the cylinder motion and flow are temporally chaotic at relatively low $Re$ .

Copyright

Corresponding author

Email address for correspondence: tumkur.ravikumar@gmail.com

References

Hide All
Anagnostopoulos, P. 2000a Numerical study of the flow past a cylinder excited transversely to the incident stream. Part 1. Lock-in zone, hydrodynamic forces and wake geometry. J. Fluids Struct. 14, 819851.
Anagnostopoulos, P. 2000b Numerical study of the flow past a cylinder excited transversely to the incident stream. Part 2. Timing of vortex shedding, aperiodic phenomena and wake parameters. J. Fluids Struct. 14, 853882.
Anagnostopoulos, P. & Bearman, P. W. 1992 Response characteristics of a vortex-excited cylinder at low Reynolds numbers. J. Fluids Struct. 6, 3950.
Argoul, P. & Le, T.-P. 2003 Instantaneous indicators of structural behaviour based on the continuous cauchy wavelet analysis. Mech. Sys. Sign. Proc. 17, 243250.
Arnol’d, V. I. 1988 Dynamical Systems III, Encyclopaedia of Mathematical Sciences. Springer.
Baek, S.-J. & Sung, H. J. 2000 Quasi-periodicity in the wake of a rotationally oscillating cylinder. J. Fluid Mech. 408, 275300.
Batcho, P. & Karniadakis, G. E. 1991 Chaotic transport in two- and three-dimensional flow past a cylinder. Phys. Fluids A 3, 10511062.
Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195222.
Bearman, P. W. 2011 Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27, 648658.
Blackburn, H. & Henderson, R. 1996 Lock-in behavior in simulated vortex-induced vibration. Exp. Therm. Fluid Sci. 12, 184189.
Calderer, R. & Masud, A. 2010 A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Comput. Mech. 46, 185197.
Chung, J. & Hulbert, G. M. 1993 A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-𝛼 method. Trans. ASME J. Appl. Mech. 60, 371375.
Cossu, C. & Morino, L. 2000 On the instability of a spring-mounted circular cylinder in a viscous flow at low Reynolds numbers. J. Fluids Struct. 14, 183196.
Dauchy, C., Dus̆sek, J. & Fraunié, P. 1997 Primary and secondary instabilities in the wake of a cylinder with free ends. J. Fluid Mech. 332, 295339.
Deshmukh, S. R. & Vlachos, D. G. 2005 Novel micromixers driven by flow instabilities: application to post-reactors. AIChE J. 51, 31933204.
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 nek5000 Web page. http://nek5000.mcs.anl.gov.
Gabbai, R. D. & Benaroya, H. 2005 An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J. Sound Vib. 282, 575616.
Gendelman, O. V. 2011 Targeted energy transfer in systems with external and self-excitation. Proc. Inst. Mech. Engrs C 225, 20072043.
Gendelman, O. V., Sigalov, G., Manevitch, L. I., Mane, M., Vakakis, A. F. & Bergman, L. A. 2012 Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. Trans. ASME 79, 011012-9.
Grassberger, P. & Procaccia, I. 1983 Characterization of strange attractors. Phys. Rev. Lett. 50, 346349.
Grossmann, A. & Morlet, J. 1984 Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723736.
Harris, F. J. 1978 On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 5183.
Hegger, R., Kantz, H. & Schreiber, T. 1999 Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9, 413435.
Henderson, R. D. 1995 Details of the drag curve near the onset of vortex shedding. Phys. Fluids 7, 21022104.
Jansen, K. E., Whiting, C. H. & Hulbert, G. M. 2000 A generalized-𝛼 method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput. Meth. Appl. Mech. Engng 190, 305319.
Karniadakis, G. E. & Triantafyllou, G. S. 1989 The crisis of transport measures in chaotic flow past a cylinder. Phys. Fluids A 1, 628630.
Lee, J. H. & Bernitsas, M. M. 2011 High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter. Ocean Engng 38, 16971712.
Leontini, J. S., Thompson, M. C. & Hourigan, K. 2006 The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow. J. Fluids Struct. 22, 857864.
Leontini, J. S., Thompson, M. C. & Hourigan, K. 2007 Three-dimensional transition in the wake of a transversely oscillating cylinder. J. Fluid Mech. 577, 79104.
Li, J., Sun, J. & Roux, B. 1992 Numerical study of an oscillating cylinder in uniform flow and in the wake of an upstream cylinder. J. Fluid Mech. 237, 457478.
Mittal, S. & Singh, S. 2005 Vortex-induced vibrations at subcritical Re . J. Fluid Mech. 534, 185194.
Nakano, M. & Rockwell, D. 1994 Flow structure in the frequency-modulated wake of a cylinder. J. Fluid Mech. 266, 93119.
Olinger, D. J. 1993 A low-dimensional model for chaos in open fluid flows. Phys. Fluids A 5, 19471951.
Olinger, D. J. & Sreenivasan, K. R. 1988 Nonlinear dynamics of the wake of an oscillating cylinder. Phys. Rev. Lett. 60, 797800.
Païdoussis, M. P., Price, S. J. & de Langre, E. 2011 Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press.
Prasanth, T. K. & Mittal, S. 2009 Vortex-induced vibration of two circular cylinders at low Reynolds number. J. Fluids Struct. 25, 731741.
Pulliam, T. H. & Vastano, J. A. 1993 Transition to chaos in an open unforced 2D flow. J. Comput. Phys. 105, 133149.
Roshko, A.1954 On the drag and shedding frequency of two-dimensional bluff bodies. National Advisory Committee for Aeronautics, TN 3169.
Sarpkaya, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19, 389447.
Shiels, D., Leonard, A. & Roshko, A. 2001 Flow-induced vibration of a circular cylinder at limiting structural parameters. J. Fluids Struct. 15, 321.
Sreenivasan, K. R. 1985 Transition and turbulence in fluid flows and low-dimensional chaos. In Frontiers in Fluid Mechanics (ed. Davis, S. H. & Lumley, J. L.), pp. 4167. Springer.
Tumkur, R. K. R., Calderer, R., Masud, A., Pearlstein, A. J., Bergman, L. A. & Vakakis, A. F. 2013 Computational study of vortex-induced vibration of a sprung rigid circular cylinder with a strongly nonlinear internal attachment. J. Fluids Struct. 40, 214232.
Tumkur, R. K. R., Fischer, P. F., Bergman, L. A., Vakakis, A. F. & Pearlstein, A. J. 2017 Stability of the steady, two-dimensional flow past a linearly-sprung circular cylinder. J. Fluid Mech. (submitted).
Vakakis, A. F., Gendelman, O. V., Bergman, L. A., McFarland, D. M., Kerschen, G. & Lee, Y. S. 2008 Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, Vol. I and II. Springer.
Van Atta, C. W. & Gharib, M. 1987 Ordered and chaotic vortex streets behind circular cylinders at low Reynolds numbers. J. Fluid Mech. 174, 113133.
Williamson, C. H. K. 1988 The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 31, 31653168.
Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.
Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355381.
Zielinska, B. J. A. & Wesfreid, J. E. 1995 On the spatial structure of global modes in wake flow. Phys. Fluids 7, 14181424.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
PDF
Supplementary material

Kumar et al. supplementary materal
Supplementary Material

 PDF (229 KB)
229 KB

Effect of an internal nonlinear rotational dissipative element on vortex shedding and vortex-induced vibration of a sprung circular cylinder

  • Ravi Kumar R. Tumkur (a1), Arne J. Pearlstein (a2), Arif Masud (a3), Oleg V. Gendelman (a4), Antoine B. Blanchard (a1), Lawrence A. Bergman (a1) and Alexander F. Vakakis (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed