Skip to main content Accessibility help
×
Home

Effect of an electric field on the stability of contaminated film flow down an inclined plane

  • M. G. BLYTH (a1)

Abstract

The stability of a liquid film flowing down an inclined plane is considered when the film is contaminated by an insoluble surfactant and subjected to a uniform normal electric field. The liquid is treated as a perfect conductor and the air above the film is treated as a perfect dielectric. Previous studies have shown that, when acting in isolation, surfactant has a stabilizing influence on the flow while an electric field has a destabilizing influence. The competition between these two effects is the focus of the present study. The linear stability problem is formulated and solved at arbitrary parameter values. An extended form of Squire's theorem is presented to argue that attention may be confined to two-dimensional disturbances. The stability characteristics for Stokes flow are described exactly; the growth rates of the normal modes at finite Reynolds number are computed numerically. We plot the neutral curves dividing regions of stability and instability, and trace how the topology of the curves changes as the intensity of the electric field varies both for a clean and for a contaminated film. With a sufficiently strong electric field, the neutral curve for a clean film consists of a lower branch trapping an area of stable modes around the origin, and an upper branch above which the flow is stable. With surfactant present, a similar situation obtains, but with an additional island of stable modes disjoint from the upper and lower branches.

Copyright

References

Hide All
Adamson, A. W. 1990 Physical Chemistry of Surfaces. Wiley.
Anshus, B. E. & Acrivos, A. 1967 The effect of surface-active agents on the stability characteristics of falling liquid films. Chem. Engng Sci. 22, 389393.
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.
Benjamin, T. B. 1964 Effect of surface contamination on wave formation in falling liquid films. Archwm. Mech. Stosow. 16, 615626.
Blyth, M. G. & Pozrikidis, C. 2004 a Effect of surfactants on the stability of two-layer channel flow. J. Fluid Mech. 505, 5986.
Blyth, M. G. & Pozrikidis, C. 2004 b Effect of surfactant on the stability of film flow down an inclined plane. J. Fluid Mech. 521, 241250.
Blyth, M. G. & Pozrikidis, C. 2004 c Effect of inertia on the Marangoni instability of the two-layer channel flow. Part II. Normal-mode analysis. J. Engng Maths. 50, 329341.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Dukler, A. 1976 The role of waves in two phase flow: some new understanding. Chem. Engng Educ. Summer, 108138.
Eggleton, C. D., Pawar, Y. P. & Stebe, K. J. 1999 Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385, 7999.
Frenkel, A. L. & Halpern, D. 2002 Stokes flow instability due to interfacial surfactant. Phys. Fluids 14, 4548.
Frenkel, A. L. & Halpern, D. 2005 Effect of inertia on the insoluble-surfactant instability of a shear flow. Phys. Rev. E 71, 016302.
Gonzalez, A. & Castellanos, A. 1996 Nonlinear electrohydrodynamic waves on films falling down an inclined plane. Phys. Rev. E 53, 35733578.
Griffing, E. M., Bankhoff, S. G., Miksis, M. J. & Schluter, R. A. 2006 Electrohydrodynamics of thin flowing films. Trans. ASME I: J. Fluids Engng 128, 276283.
Ha, J.-W. & Yang, S.-M. 1995 Effects of surfactant on the deformation and stability of a drop in a viscous fluid in an electric field. J. Colloid Interface Sci. 175, 369385.
Ha, J.-W. & Yang, S.-M. 1998 Effect of nonionic surfactant on the deformation and breakup of a drop in an electric field. J. Colloid Interface Sci. 206, 195204.
Halpern, D. & Frenkel, A. L. 2003 Destabilization of a creeping flow by interfacial surfactant: linear theory extended to all wavenumbers. J. Fluid Mech. 485, 191220.
Hesla, T. I., Pranckh, F. R. & Preziosi, L. 1986 Squire's theorem for two stratified fluids. Phys. Fluids 29, 28082811.
Ji, W. & Setterwall, F. 1994 On the instabilities of vertical falling liquid films in the presence of surface-active solute. J. Fluid Mech. 278, 297323.
Karniadakis, G., Beskok, A. & Aluru, N. 2005 Microflows and Nanoflows. Springer.
Kim, H., Bankoff, S. G. & Miksis, M. J. 1991 The effect of an electrostatic field on film flow down an inclined plane. Phys. Fluids A 4, 21172130.
Kistler, S. F. & Schweizer, P. M. 1997 Liquid Film Coating. Chapman & Hall.
Li, X. F. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341, 165194.
Lin, S. P. 1970 Stabilizing effects of surface-active agents on a film flow. AIChE 16, 375379.
Matar, O. K. & Lawrence, C. J. 2006 The flow of a thin conducting film over a spinning disc in the presence of an electric field. Chem. Engng Sci. 61, 38383849.
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.
Mukhopadhyay, A. & Dandapat, B. S. 2005 Nonlinear stability of a conducting viscous film flowing down an inclined plane at moderate Reynolds number in the presence of a uniform normal electric field. J. Phys. D 38, 138143.
Pozrikidis, C. 2003 Effect of surfactants on film flow down a periodic wall. J. Fluid Mech. 496, 105127.
Pozrikidis, C. 2004 Instability of multi-layer channel and film flows. Adv. Appl. Mech. 40, 179239.
Shen, M. C., Sun, S. M. & Meyer, R. E. 1991 Surface waves on viscous magnetic fluid flow down an inclined plane. Phys. Fluids A 3, 439445.
Tseluiko, D. & Papageorgiou, D. T. 2006 Wave evolution on electrified falling films. J. Fluid Mech. 556, 361386.
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.
Wierschem, A., Scholle, M. & Aksel, N. 2003 Vortices in film flow over strongly undulated bottom profiles at low Reynolds numbers. Phys. Fluids 15, 426435.
Whitaker, S. 1964 Effect of surface active agents on the stability of falling liquid films. Ind. Engng Chem. Fundls 3, 132142.
Whitaker, S. & Jones, L. O. 1966 Stability of falling liquid films. Effect of interface and interfacial mass transport. AIChE 12, 421431.
Yih, C. S. 1955 Stability of two-dimensional parallel flows for three-dimensional disturbances. Q. Appl. Maths. 12, 434435.
Yih, C. S. 1963 Stability of a liquid flow down an inclined plane. Phys. Fluids 6, 321334.
Yon, S. & Pozrikidis, C. 1998 A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop. Comput. Fluids 27, 879902.
Yoshimura, P., Nosoko, T. & Nagata, T. 1996 Enhancement of mass transfer into a falling laminar liquid film by two-dimensional surface waves – some experimental observations and modeling. Chem. Engng Sci. 51, 12311240.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Effect of an electric field on the stability of contaminated film flow down an inclined plane

  • M. G. BLYTH (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed