Skip to main content Accessibility help
×
Home

Dynamics of the large-scale structures and associated noise emission in airfoil slats

  • Daniel S. Souza (a1) (a2) (a3), Daniel Rodríguez (a4) (a2) (a5), Fernando H. T. Himeno (a2) and Marcello A. F. Medeiros (a2)

Abstract

We investigate the slat narrowband peak noise generating mechanism. Unsteady flow data were generated by a lattice-Boltzmann-based commercial code for four configurations, accounting for variations of the airfoil angle of attack and slat overlap. Comparison with experimental results indicates that the aspects of the flow field relevant for the generation of the narrowband peaks were accurately captured. Frequency-domain proper orthogonal decomposition (POD) is applied to identify dominant large-scale structures in the frequency range dominated by the peaks. The combined use of the two POD metrics, namely, the turbulent kinetic energy in the turbulent flow region and the acoustic pressure in the far field, demonstrated that the structures most correlated with the noise resemble spanwise coherent Kelvin–Helmholtz vortices which dominate the slat cove only at the frequency of the narrowband peaks. Time evolution of the structures educed using the acoustic pressure correlation provides detailed evidence of the hydrodynamic and acoustic steps of a Rossiter-like feedback mechanism between the slat cusp and trailing edge. The combined analysis of results for the different slat configurations provides an explanation for the effect of the slat configuration on the amplitude of the narrowband peaks observed in previous studies, particularly the influence of the main-element suction peak.

Copyright

Corresponding author

Email address for correspondence: daniel.s.souza@unesp.br

Footnotes

Hide All

Present address: ETSIAE-UPM, Universidad Politécnica de Madrid, Spain

Footnotes

References

Hide All
Aflalo, B., Simões, L. G. C., Silva, R. & Medeiros, M. A. F. 2010 Comparative analysis of turbulence models for slat noise source calculations employing unstructured meshes. In Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Amaral, F., Himeno, F., Pagani, C. Jr. & Medeiros, M. 2017 Slat noise from an MD30P30N airfoil at extreme angles of attack. AIAA J. 56 (3), 964978.
Amaral, F. R., Pagani, C. C. Jr., Himeno, F. H .T., Souza, D. D. & Medeiros, M. A. F. 2019 On closed-section wind-tunnel aeroacoustic experiments with a two-dimensional lifting body. Appl. Acoust. 148, 409422.
Arndt, R. E. A., Long, D. F. & Glauser, M. N. 1997 The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J. Fluid Mech. 340, 133.
Batchelor, G. K. & Proudman, I. 1954 The effect of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Maths 7 (1), 83103.
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511525.
Brès, G. A., Pérot, F. & Freed, D. 2010 A Ffowcs Williams–Hawkings solver for lattice-Boltzmann based computational aeroacoustics. In Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Chin, V. D., Peters, D. W., Spaid, F. W. & McGhee, R. J. 1993 Flowfield measurements about a multi-element airfoil at high Reynolds numbers. In Proceedings of the 24th AIAA Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.
Choudhari, M., Lockard, D., Macaraeg, M., Singer, B., Streett, C., Neubert, G., Stoker, W., Underbrink, J., Berkman, M., Khorrami, M. et al. 2002 Aeroacoustic experiments in the Langley low-turbulence pressure tunnel. Tech. Rep. NASA, Hampton, USA.
Choudhari, M. M. & Khorrami, M. R. 2007 Effect of three-dimensional shear-layer structures on slat cove unsteadiness. AIAA J. 45 (9), 21742186.
Crighton, D. G. 1991 Airframe noise. In Aeroacoustics of Flight Vehicles: Theory and Practice (ed. Hubbard, H. H.), vol. 1, p. 447. NASA.
Dantas, L., Catalano, F., Medeiros, M. & Carmo, M. 2010 The update process and characterization of the Sáo Paulo wind-tunnel for aeroacoustic testing. In Proceedings ICAS-2010. Optimage Ltd.
Deck, S. 2005 Zonal-detached-eddy simulation of the flow around a high-lift configuration. AIAA J. 43 (11), 23722384.
Deck, S. & Laraufie, R. 2013 Numerical investigation of the flow dynamics past a three-element aerofoil. J. Fluid Mech. 732, 401444.
Dierke, J., Appel, C., Siebert, J., Bauer, M., Siefert, M. & Ewert, R. 2011 3D computation of broadband slat noise from swept and unswept high-lift wing sections. In Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Dobrzynski, W. 2010 Almost 40 years of airframe noise research: what did we achieve? J. Aircraft 47 (2), 353367.
Dobrzynski, W., Nagakura, K., Gehlhar, B. & Bushbaum, A. 1998 Airframe noise studies on wings deployed high-lift devices. In Proceedings of the 4th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Dobrzynski, W. & Pott-Pollenske, M. 2001 Slat noise source studies for farfield noise prediction. In Proceedings of the 7th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Druault, P., Gloerfelt, X. & Mervant, T. 2011 Investigation of flow structures involved in sound generation by two- and three-dimensional cavity flows. Comput. Fluids 48, 5467.
Ewert, R. 2008 Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method. Comput. Fluids 37, 369387.
Ewert, R., Dierke, J., Pott-Pollenske, M., Appel, C., Emunds, R. & Sutcliffe, M. 2010 CAA-RPM prediction and validation of slat setting influence on broadband high-lift noise generation. In Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Farassat, F. & Succi, G. 1980 A review of propeller discrete frequency noise prediction technology with enphasis on two current methods for time domain calculations. Comput. Fluids 35, 898909.
Fares, E. 2006 Unsteady flow simulation of the ahmed reference body using a lattice Boltzmann approach. Computers and Fluid 35, 940950.
Ffowcs-Williams, J. & Hall, L. 1970 Aerodynamic sound generation by turbulence in the vicinity of a scattering half plane. J. Fluid Mech. 40, 657670.
Fink, M. R. 1979 Noise component method for airframe noise. J. Aircraft 16 (10), 659665.
Freund, J. & Colonius, T. 2009 Turbulence and sound-field POD analysis of a turbulent jet. Intl J. Aeroacoust. 8 (4), 337354.
He, X. & Luo, L. 1997 Theory of lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56 (6), 68116817.
Hein, S., Hohage, T., Koch, W. & Schöberl, J. 2007 Acoustic resonances in a high-lift configuration. J. Fluid Mech. 582, 179202.
Heller, H. & Bliss, D. 1975 The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression. In Proceedings of the 2nd AIAA Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Herr, M., Pott-Pollenske, M., Ewert, R., Boenke, D., Siebert, J., Delfs, J., Rudenko, A., Büscher, A., Friedel, H. & Mariotti, I. 2015 Large-scale studies on slat noise reduction. In Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Holmes, P., Lumley, J. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.
Imamura, T., Enomoto, S., Yokokawa, Y. & Yamamoto, K. 2008 Three-dimensional unsteady flow computations around a conventional slat of high-lift devices. AIAA J. 46 (5), 10451053.
Imamura, T., Ura, H., Yokokawa, Y. & Yamamoto, K. 2009 A far-field noise and near-field unsteadyness of a simplified high-lift-configuration model (slat). In Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Jenkins, L. N., Khorrami, M. R. & Choudhari, M. M. 2004 Characterization of unsteady flow structures near leading-edge slat: part I. PIV measurements. In Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Khorrami, M., Berkman, M. & Choudhari, M. 2000 Unsteady flow computation of a slat with a blunt trailing edge. AIAA J. 38 (11), 20502058.
Khorrami, M. R., Choudhari, M. M. & Jenkins, L. N. 2004 Characterization of unsteady flow structures near leading-edge slat: part II. 2D computations. In Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Khorrami, M. R., Singer, B. & Berkman, M. 2001 Time-accurate simulations and acoustic analysis of slat free-shear-layer. In Proceedings of the 7th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Khorrami, M. R., Singer, B. & Lockard, D. 2002 Time-accurate simulations and acoustic analysis of slat free-shear-layer: part II. In Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Klausmayer, S. M. & Lin, J. C. 1994 An experimental investigation of skin friction on a multi-element airfoil. In Proceedings of the 12th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.
Kolb, A., Faulhaber, P., Drobietz, R. & Grünewald, M. 2007 Aeroacoustic wind tunnel measurements on a 2D high-lift configuration. In Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Li, Y., Shock, R., Zhang, R. & Chen, H. 2004 Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method. J. Fluid Mech. 519, 273300.
Lockard, D. P. & Choudhari, M. M. 2009 Noise radiation from leading-edge slat. In Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Lockard, D. P. & Choudhari, M. M. 2012 The influence of realistic Reynolds numbers on slat noise simulations. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Mendoza, J., Brooks, T. & Humphreys, W. Jr. 2002 An aeroacoustic study of a leading edge slat configuration. Intl J. Aeroacoust. 1 (3), 241274.
Murayama, M., Nakakita, K., Yamamoto, K., Ura, H., Ito, Y. & Choudhari, M. 2014 Experimental study of slat noise from 30P30N three-element high-lift airfoil in JAXA hard-wall low-speed wind tunnel. In Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Najafi-Yazdi, A., Brès, G. & Mongeau, L. 2011 An acoustic analogy formulation for moving sources in uniformly moving media. Proc. R. Soc. A 467, 144165.
Pagani, C. Jr., Souza, D. & Medeiros, M. 2016 Slat noise: aeroacoustic beamforming in closed-section wind tunnel with numerical comparison. AIAA J. 54 (7), 21002115.
Pagani, C. Jr., Souza, D. & Medeiros, M. 2017 Experimental investigation on the effect of slat geometrical configurations on aerodynamic noise. J. Sound Vib. 394, 256279.
Pascioni, K. A. & Cattafesta, L. N. 2018 Unsteady characteristics of a slat-cove flow field. Phys. Rev. Fluids 3, 034607.
Pérennè, S. & Roger, M. 1998 Aerodynamic noise of a two-dimensional wing with high-lift devices. In Proceedings of the 4th AIAA/CEAS Aeroacoustic Conference. American Institute of Aeronautics and Astronautics.
Pott-Pollenske, M., Alvarez-Gonzalez, J. & Dobrzynski, W. 2003 Effect of slat gap/overlap on farfield radiated noise. In Proceedings of 9th AIAA/CEAS Aeracoustics Conference. American Institute of Aeronautics and Astronautics.
Richard, P. R., Wilkins, S. J. & Hall, J. W. 2018 Particle image velocity investigation of the coherent structures in a leading-edge slat flow. J. Fluids Engng 582, 179202.
Rossiter, J. E.1966 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Tech. Rep. Aeronautical Research Council.
Rowley, C. W., Colonius, T. & Basu, A. 2002 On self-sustained oscilations in two-dimensional compressible flow over rectangular cavity. J. Fluid Mech. 455, 315346.
Satti, R., Li, Y., Shock, R. & Noelting, S. 2008 Simulation of flow over a 3-element airfoil using a lattice-Boltzmann method. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics.
Simões, L. G. C., Souza, D. S. & Medeiros, M. A. F. 2011 On the small effect of boundary layer thicknesses on slat noise. In Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Sinha, A., Rodríguez, D., Brès, G. & Colonius, T. 2014 Wavepacket model for supersonic jet noise. J. Fluid Mech. 742, 7195.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Parts I–III. Q. Appl. Maths 45 (3), 561571.
Souza, D. S., Rodríguez, D., Simões, L. & Medeiros, M. A. F. 2015 Effect of an excrescence in the slat cove: flow-field, acoustic radiation and coherent structures. Aerosp. Sci. Technol. 44, 108115.
Spaid, F. W. & Lynch, F. T. 1996 High Reynolds number, multi-element airfoil flowfield measurements. In Proceedings of the 34th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics.
Sun, Y., Taira, K., Cattafesta III, L. N. & Ukeiley, L. S. 2017 Biglobal instabilities of compressible open-cavity flows. J. Fluid Mech. 826, 270301.
Teixeira, C. M. 1998 Incorporating turbulence models into the Lattice–Boltzmann method. Intl J. Mod. Phys. C 9 (8), 11591175.
Terracol, M., Manoha, E. & Lemoine, B. 2016 Investigation of the unsteady flow and noise generation in a slat cove. AIAA J. 54 (2), 469489.
Valarezo, W. O., Dominik, C. J., McGhee, R. J., Goodman, W. L. & Paschal, K. B. 1991 Multielement airfoil optimization for maiximum lift at high Reynolds numbers. In Proceedings of 9th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.
Wolf-Gladrow, D. 2000 Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer.
Zhang, Y., Chen, H., Wang, K. & Wang, M. 2017 Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation. AIAA J. 55 (12), 42194233.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Dynamics of the large-scale structures and associated noise emission in airfoil slats

  • Daniel S. Souza (a1) (a2) (a3), Daniel Rodríguez (a4) (a2) (a5), Fernando H. T. Himeno (a2) and Marcello A. F. Medeiros (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed