Skip to main content Accessibility help

Dynamics of liquid imbibition through paper with intra-fibre pores

  • Sooyoung Chang (a1), Jaedeok Seo (a1), Seokbin Hong (a1), Duck-Gyu Lee (a2) and Wonjung Kim (a1)...


We present a combined experimental and theoretical investigation of the dynamics of liquid imbibition through paper. The Washburn equation is widely used to describe the dynamics of capillary flow through paper, but this classical model has limited accuracy, which often makes it difficult to use in developing analytic systems such as paper-based microfluidic devices. We here report that the internal cavity of the cellulose fibres composing paper is significantly responsible for the limited accuracy of the Washburn equation. Our experiments demonstrated that liquid can be absorbed in the internal cavity of the cellulose fibres as well as in the inter-fibre pores formed by the fibre network. We developed a mathematical model for liquid imbibition by considering the flow through the intra-fibre pores based on experimental measurements of the intra-structure of cellulose fibres. The model markedly improves the prediction of the liquid absorption length, compared with the results of the Washburn equation, thus revealing the physics behind the limits of the Washburn equation. This study suggests that the accurate description of capillary imbibition through paper require parameters characterizing the internal pores of the cellulose fibres comprising the paper. Our results not only provide a new insight into porous media flows with different sized pores, but also provide a theoretical background for flow control in paper-based microfluidic systems.


Corresponding author

Email address for correspondence:


Hide All

Equally contributing authors.



Hide All
Ahmed, S., Bui, M. N. & Abbas, A. 2016 Paper-based chemical and biological sensors: engineering aspects. Biosens. Bioelectr. 77, 249263.
Amaral, L., Barabási, A. L., Buldyrev, S. V., Havlin, S. & Stanley, H. E. 1994 New exponent characterizing the effect of evaporation on imbibition experiments. Phys. Rev. Lett. 72, 641644.
Balankin, A. S., López, H. Z., León, E. P., Matamoros, D. M., Ruiz, L. M., López, D. S. & Rodríguez, M. A. 2013 Depinning and dynamics of imbibition fronts in paper under increasing ambient humidity. Phys. Rev. E 87, 014102.
Bico, J. & Quéré, D. 2003 Precursors of impregnation. Europhys. Lett. 61, 348353.
Böhm, A., Carstens, F., Trieb, C., Schabel, S. & Biesalski, M. 2014 Engineering microfluidic papers: effect of fiber source and paper sheet properties on capillary-driven fluid flow. Microfluid. Nanofluid. 16, 789799.
Cate, D. M., Adkins, J. A., Mettakoonpitak, J. & Henry, C. S. 2014 Recent developments in paper-based microfluidic devices. Analyt. Chem. 87, 1941.
Cummins, B. M., Chinthapatla, R., Ligler, F. S. & Walker, G. M. 2017 Time-dependent model for fluid flow in porous materials with multiple pore sizes. Analyt. Chem. 89, 43774381.
Darcy, H. 1856 Les Fontaines Publiques de la Ville de Dijon. Dalmont.
Delker, T., Pengra, D. B. & Wong, P. 1996 Interface pinning and the dynamics of capillary rise in porous media. Phys. Rev. Lett. 76, 29022905.
Dubé, M., Rost, M., Elder, K. R., Alava, M., Majaniemi, S. & Ala-Nissila, T. 1999 Liquid conservation and nonlocal interface dynamics in imbibition. Phys. Rev. Lett. 83, 16281631.
Hong, S., Kwak, R. & Kim, W. 2016 Paper-based flow fractionation system applicable to preconcentration and field-flow separation. Analyt. Chem. 88, 16821687.
Horváth, V. K. & Stanley, H. E. 1995 Temporal scaling of interfaces propagating in porous media. Phys. Rev. E 52, 51665169.
Hu, J., Wang, S., Wang, L., Li, F., Pingguan-Murphy, B., Lu, T. J. & Xu, F. 2014 Advances in paper-based point-of-care diagnostics. Biosens. Bioelectr. 54, 585597.
Lin, Y., Gritsenko, D., Feng, S., Teh, Y. C., Lu, X. & Xu, J. 2016 Detection of heavy metal by paper-based microfluidics. Biosens. Bioelectr. 83, 256266.
Mantanis, G. I., Young, R. A. & Rowell, R. M. 1995 Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2, 122.
Martinez, A. W., Phillips, S. T., Whitesides, G. M. & Carrilho, E. 2009 Diagnostics for the developing world: microfluidic paper-based analytical devices. Analyt. Chem. 82, 310.
Masoodi, R. & Pillai, K. M. 2010 Darcy’s law-based model for wicking in paper-like swelling porous media. AIChE J. 56, 22572267.
Masoodi, R., Tan, H. & Pillai, K. M. 2012 Numerical simulation of liquid absorption in paper-like swelling porous media. AIChE J. 58, 25362544.
Nayer, A. N. & Hossfeld, R. L. 1949 Hydrogen bonding and the swelling of wood in various organic liquids. J. Am. Chem. Soc. 71, 28522855.
Noh, H. & Phillips, S. T. 2010 Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Analyt. Chem. 82, 41814187.
Pillai, K. M. & Advani, S. G. 1998 A model for unsaturated flow in woven fiber preforms during mold filling in resin transfer molding. J. Compos. Mater. 32, 17531783.
Rost, M., Laurson, L., Dubé, M. & Alava, M. 2007 Fluctuations in fluid invasion into disordered media. Phys. Rev. Lett. 98, 054502.
Schuchardt, D. R. & Berg, J. C. 1991 Liquid transport in composite cellulose-superabsorbent fiber networks. Wood Fiber Sci. 23, 342357.
Walji, N. & MacDonald, B. D. 2016 Influence of geometry and surrounding conditions on fluid flow in paper-based devices. Micromachines 7, 73.
Washburn, E. W. 1921 The dynamics of capillary flow. Phys. Rev. 17, 273283.
Xia, Y., Si, J. & Li, Z. 2016 Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens. Bioelectr. 77, 774789.
Yetisen, A. K., Akram, M. S. & Lowe, C. R. 2013 Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip 13, 22102251.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Dynamics of liquid imbibition through paper with intra-fibre pores

  • Sooyoung Chang (a1), Jaedeok Seo (a1), Seokbin Hong (a1), Duck-Gyu Lee (a2) and Wonjung Kim (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed