Skip to main content Accessibility help

Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields

  • P. Rowghanian (a1), C. D. Meinhart (a1) and O. Campàs (a1)


We systematically study the shape and dynamics of a Newtonian ferrofluid drop immersed in an immiscible, Newtonian and non-magnetic viscous fluid under the action of a uniform external magnetic field. We obtain the exact equilibrium drop shapes for arbitrary ferrofluids, characterize the extent of deviations of the exact shape from the commonly assumed ellipsoidal shape, and analyse the smoothness of highly curved tips in elongated drops. We also present a comprehensive study of drop deformation for a Langevin ferrofluid. Using a computational scheme that allows fast and accurate simulations of ferrofluid drop dynamics, we show that the dynamics of drop deformation by an applied magnetic field is described up to a numerical factor by the same time scale as drop relaxation in the absence of any magnetic field. The numerical factor depends on the ratio of viscosities and the ratio of magnetic to capillary stresses, but is independent of the nature of the ferrofluid in most practical cases.


Corresponding author

Email address for correspondence:


Hide All
Abou, B., Wesfreid, J.-E. & Roux, S. 2000 The normal field instability in ferrofluids: hexagon–square transition mechanism and wavenumber selection. J. Fluid Mech. 416, 217237.
Acero, A. J., Ferrera, C., Montanero, J. M., Herrada, M. A. & López-Herrera, J. M. 2013 Experimental analysis of the evolution of an electrified drop following high voltage switching. Eur. J. Mech. (B/Fluids) 38, 5864.
Afkhami, S., Renardy, Y., Renardy, M., Riffle, J. S. & St Pierre, T. 2008 Field-induced motion of ferrofluid droplets through immiscible viscous media. J. Fluid Mech. 610, 363380.
Afkhami, S., Tyler, A. J., Renardy, Y., Renardy, M., St Pierre, T. G., Woodward, R. C. & Riffle, J. S. 2010 Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358384.
Allan, R. S. & Mason, S. G. 1962 Particle behaviour in shear and electric fields. I. Deformation and burst of fluid drops. Proc. R. Soc. Lond. A 267 (1328), 4561.
Arkhipenko, V. I., Barkov, Y. D. & Bashtovoi, V. G. 1979 Shape of a drop of magnetized fluid in a homogeneous magnetic field. Magn. Gidrodin. 14, 131134.
Bacri, J.-C., Cebers, A. O. & Perzynski, R. 1994 Behavior of a magnetic fluid microdrop in a rotating magnetic field. Phys. Rev. Lett. 72 (17), 27052708.
Bacri, J. C. & Salin, D. 1982 Instability of ferrofluid magnetic drops under magnetic field. J. Phys. Lett. 43 (17), 649654.
Basaran, O. A., Patzek, T. W., Benner, R. E. Jr & Scriven, L. E. 1995 Nonlinear oscillations and breakup of conducting, inviscid drops in an externally applied electric field. Ind. Engng Chem. Res. 34 (10), 34543465.
Basaran, O. A. & Wohlhuter, F. K. 1992 Effect of nonlinear polarization on shapes and stability of pendant and sessile drops in an electric (magnetic) field. J. Fluid Mech. 244, 116.
Boudouvis, A. G., Puchalla, J. L., Scriven, L. E. & Rosensweig, R. E. 1987 Normal field instability and patterns in pools of ferrofluid. J. Magn. Magn. Mater. 65 (2), 307310.
Bychkova, A. V., Sorokina, O. N., Rosenfeld, M. A. & Kovarski, A. L. 2012 Multifunctional biocompatible coatings on magnetic nanoparticles. Russ. Chem. Rev. 81 (11), 10261050.
Cao, Y. & Ding, Z. J. 2014 Formation of hexagonal pattern of ferrofluid in magnetic field. J. Magn. Magn. Mater. 355, 9399.
Cebers, A. & Kalis, H. 2012 Mathematical modelling of an elongated magnetic droplet in a rotating magnetic field. Math. Modelling Numer. Anal. 17 (1), 4757.
Champion, J. A. & Mitragotri, S. 2006 Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103 (13), 49304934.
Chen, C.-Y., Chen, C.-H. & Lee, W.-F. 2009 Experiments on breakups of a magnetic fluid drop through a micro-orifice. J. Magn. Magn. Mater. 321 (20), 35203525.
Chen, C.-Y. & Cheng, Z.-Y. 2008 An experimental study on Rosensweig instability of a ferrofluid droplet. Phys. Fluids 20 (5), 054105.
Chilcott, M. D. & Rallison, J. M. 1988 Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newtonian Fluid Mech. 29, 381432.
Collins, R. T., Harris, M. T. & Basaran, O. A. 2007 Breakup of electrified jets. J. Fluid Mech. 588, 75.
Corson, L. T., Tsakonas, C., Duffy, B. R., Mottram, N. J., Sage, I. C., Brown, C. V. & Wilson, S. K. 2014 Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment. Phys. Fluids 26 (12), 122106.
Cox, R. G. 1969 The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 37 (03), 601623.
Datta, S., Das, A. K. & Das, P. K. 2015 Uphill movement of sessile droplets by electrostatic actuation. Langmuir 31 (37), 1019010197.
Deshmukh, S. D. & Thaokar, R. M. 2012 Deformation, breakup and motion of a perfect dielectric drop in a quadrupole electric field. Phys. Fluids 24 (3), 032105.
Engel, A., Langer, H. & Chetverikov, V. 1999 Non-linear analysis of the surface profile resulting from the one-dimensional Rosensweig instability. J. Magn. Magn. Mater. 195 (1), 212219.
Esmaeeli, A. & Sharifi, P. 2011a The transient dynamics of a liquid column in a uniform transverse electric field of small strength. J. Electrostat. 69 (6), 504511.
Esmaeeli, A. & Sharifi, P. 2011b Transient electrohydrodynamics of a liquid drop. Phys. Rev. E 84 (3), 036308.
Feng, J. Q. & Scott, T. C. 1996 A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311, 289326.
Ferrera, C., López-Herrera, J. M., Herrada, M. A., Montanero, J. M. & Acero, A. J. 2013 Dynamical behavior of electrified pendant drops. Phys. Fluids 25 (1), 012104.
Friberg, S., Larsson, K. & Sjoblom, J. 2003 Food Emulsions. CRC Press.
Gollwitzer, C., Matthies, G., Richter, R., Rehberg, I. & Tobiska, L. 2007 The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation. J. Fluid Mech. 571, 455474.
Gupta, A. K. & Gupta, M. 2005 Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26 (18), 39954021.
Karyappa, R. B., Naik, A. V. & Thaokar, R. M. 2015 Electroemulsification in a uniform electric field. Langmuir 32 (1), 4654.
Kumar, C. S. S. R. & Mohammad, F. 2011 Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63 (9), 789808.
Kushch, V. I., Sangani, A. S., Spelt, P. D. M. & Koch, D. L. 2002 Finite-Weber-number motion of bubbles through a nearly inviscid liquid. J. Fluid Mech. 460, 241280.
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2015 Nonlinear electrohydrodynamics of slightly deformed oblate drops. J. Fluid Mech. 774, 245266.
Landau, L. D., Pitaevskii, L. P. & Lifshitz, E. M. 1984 Electrodynamics of Continuous Media. Elsevier.
Laurent, S., Dutz, S., Häfeli, U. O. & Mahmoudi, M. 2011 Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166 (1), 823.
Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V. & Tobiska, L. 2006 Numerical treatment of free surface problems in ferrohydrodynamics. J. Phys.: Condens. Matter 18 (38), S2657S2669.
Lavrova, O., Matthies, G., Polevikov, V. & Tobiska, L. 2004 Numerical modeling of the equilibrium shapes of a ferrofluid drop in an external magnetic field. Proc. Appl. Maths Mech. 4 (1), 704705.
Li, H., Halsey, T. C. & Lobkovsky, A. 1994 Singular shape of a fluid drop in an electric or magnetic field. Europhys. Lett. 27 (8), 575.
Mandal, S., Chaudhury, K. & Chakraborty, S. 2014 Transient dynamics of confined liquid drops in a uniform electric field. Phys. Rev. E 89 (5), 053020.
Meiron, D. I. 1989 On the stability of gas bubbles rising in an inviscid fluid. J. Fluid Mech. 198, 101114.
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.
Miksis, M. J. 1981 Shape of a drop in an electric field. Phys. Fluids 24 (11), 19671972.
Mizuta, Y. 2011 Stability analysis on the free surface phenomena of a magnetic fluid for general use. J. Magn. Magn. Mater. 323 (10), 13541359.
Nguyen, N.-T., Ng, K. M. & Huang, X. 2006 Manipulation of ferrofluid droplets using planar coils. Appl. Phys. Lett. 89 (5), 052509.
Nielloud, F. & Marti-Mestres, G. 2000 Pharmaceutical Emulsions and Suspensions: Revised and Expanded. CRC Press.
Notz, P. K. & Basaran, O. A. 1999 Dynamics of drop formation in an electric field. J. Colloid Interface Sci. 213 (1), 218237.
Paknemat, H., Pishevar, A. R. & Pournaderi, P. 2012 Numerical simulation of drop deformations and breakup modes caused by direct current electric fields. Phys. Fluids 24 (10), 102101.
Pillai, R., Berry, J. D., Harvie, D. J. E. & Davidson, M. R. 2015 Electrolytic drops in an electric field: a numerical study of drop deformation and breakup. Phy. Rev. E 92 (1), 013007.
Potts, H. E., Barrett, R. K. & Diver, D. A. 2001 Dynamics of freely-suspended drops. J. Phys. D: Appl. Phys. 34 (17), 2529.
Rallison, J. M. 1984 The deformation of small viscous drops and bubbles in shear flows. Annu. Rev. Fluid Mech. 16 (1), 4566.
Ramaswamy, S. & Leal, L. G. 1999 The deformation of a newtonian drop in the uniaxial extensional flow of a viscoelastic liquid. J. Non-Newtonian Fluid Mech. 88 (1), 149172.
Rhodes, S., He, X., Elborai, S., Lee, S.-H. & Zahn, M. 2006 Magnetic fluid behavior in uniform dc, ac, and rotating magnetic fields. J. Electrostat. 64 (7), 513519.
Rosenkilde, C. E. 1969 A dielectric fluid drop in an electric field. Proc. R. Soc. Lond. A 312 (1511), 473494.
Rosensweig, R. E. 2013 Ferrohydrodynamics. Courier Corporation.
Salipante, P. F. & Vlahovska, P. M. 2010 Electrohydrodynamics of drops in strong uniform dc electric fields. Phys. Fluids 22 (11), 112110.
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 2764.
Schmitz, R. & Felderhof, B. U. 1982 Creeping flow about a spherical particle. Physica A 113 (1), 90102.
Sero-Guillaume, O. E., Zouaoui, D., Bernardin, D. & Brancher, J. P. 1992 The shape of a magnetic liquid drop. J. Fluid Mech. 241, 215232.
Shapiro, B., Kulkarni, S., Nacev, A., Muro, S., Stepanov, P. Y. & Weinberg, I. N. 2015 Open challenges in magnetic drug targeting. WIREs Nanomed. Nanobiotechnol. 7 (3), 446457.
Shaw, S. J. & Spelt, P. D. M. 2009 Critical strength of an electric field whereby a bubble can adopt a steady shape. Proc. R. Soc. Lond. A 465, 31273143.
Sherwood, J. D. 1988 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133146.
Sherwood, J. D. 1991 The deformation of a fluid drop in an electric field: a slender-body analysis. J. Phys. A: Math. Gen. 24 (17), 4047.
Shi, D., Bi, Q. & Zhou, R. 2014 Numerical simulation of a falling ferrofluid droplet in a uniform magnetic field by the VOSET method. Numer. Heat Transfer 66 (2), 144164.
Shliomis, M. I. 1972 Effective viscosity of magnetic suspensions. Zh. Eksp. Teor. Fiz. 61, 24112418.
Sjoblom, J. 2005 Emulsions and Emulsion Stability. (Surfactant Science Series) , vol. 132. CRC Press.
Stierstadt, K. & Liu, M. 2015 Maxwell’s stress tensor and the forces in magnetic liquids. Z. Angew. Math. Mech. 95 (1), 437.
Stone, H. A., Lister, J. R. & Brenner, M. P. 1999 Drops with conical ends in electric and magnetic fields. Proc. R. Soc. Lond. A 455 (1981), 329347.
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.
Taylor, G. I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280 (1382), 383397.
Tretheway, D. C. & Leal, L. G. 2001 Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid. J. Non-Newtonian Fluid Mech. 99 (2), 81108.
Tsebers, A. 1985 Virial method of investigation of statics and dynamics of drops of magnetizable liquids. Magnetohydrodynamics (United States) 21 (1), 1926 (Engl. Transl.).
Wehking, J. D. & Kumar, R. 2015 Droplet actuation in an electrified microfluidic network. Lab on a Chip 15 (3), 793801.
Wohlhuter, F. K. & Basaran, O. A. 1992 Shapes and stability of pendant and sessile dielectric drops in an electric field. J. Fluid Mech. 235, 481510.
Wohlhuter, F. K. & Basaran, O. A. 1993 Effects of physical properties and geometry on shapes and stability of polarizable drops in external fields. J. Magn. Magn. Mater. 122 (1), 259263.
Zakinyan, A., Nechaeva, O. & Dikansky, Y. 2012 Motion of a deformable drop of magnetic fluid on a solid surface in a rotating magnetic field. Exp. Therm. Fluid Sci. 39, 265268.
Zhou, C., Yue, P., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2010 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids. J. Comput. Phys. 229 (2), 498511.
Zhu, G.-P., Nguyen, N.-T., Ramanujan, R. V. & Huang, X.-Y. 2011 Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27 (24), 1483414841.
Zimny, K., Mascaro, B., Brunet, T., Poncelet, O., Aristégui, C., Leng, J., Sandre, O. & Mondain-Monval, O. 2014 Design of a fluorinated magneto-responsive material with tuneable ultrasound scattering properties. J. Mater. Chem. B 2 (10), 12851297.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields

  • P. Rowghanian (a1), C. D. Meinhart (a1) and O. Campàs (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed