Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-16T09:16:55.712Z Has data issue: false hasContentIssue false

Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold

Published online by Cambridge University Press:  24 August 2021

Quoc Vo*
Affiliation:
School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Republic of Singapore
Tuan Tran*
Affiliation:
School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Republic of Singapore
*
Email addresses for correspondence: xqvo@ntu.edu.sg, ttran@ntu.edu.sg
Email addresses for correspondence: xqvo@ntu.edu.sg, ttran@ntu.edu.sg

Abstract

Electrowetting on dielectric (EWOD) is a powerful tool in many droplet-manipulation applications with a notorious weakness caused by contact-angle saturation (CAS), a phenomenon limiting the equilibrium contact angle of an EWOD-actuated droplet at high applied voltage. In this paper, we study the spreading behaviours of droplets on EWOD substrates with the range of applied voltage exceeding the saturation limit. We experimentally find that at the initial stage of spreading, the driving force at the contact line still follows the Young–Lippmann law even if the applied voltage is higher than the CAS voltage. We then theoretically establish the relation between the initial contact-line velocity and the applied voltage using the force balance at the contact line. We also find that the amplitude of capillary waves on the droplet surface generated by the contact line's initial motion increases with the applied voltage. We provide a working framework utilising EWOD with voltages beyond CAS by characterising the capillary waves formed on the droplet surface and their self-similar behaviours. We finally propose a theoretical model of the wave profiles taking into account the viscous effects and verify this model experimentally. Our results provide avenues to utilise the EWOD effect with voltages beyond the CAS threshold, and have strong bearing on emerging applications such as digital microfluidic and ink-jet printing.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baret, J.-C. & Brinkmann, M. 2006 Wettability control of droplet deposition and detachment. Phys. Rev. Lett. 96, 146106.CrossRefGoogle ScholarPubMed
Billingham, J. 1999 Surface-tension-driven flow in fat fluid wedges and cones. J. Fluid Mech. 397, 4571.CrossRefGoogle Scholar
Blossey, R. 2003 Self-cleaning surfaces – virtual realities. Nat. Mater. 2, 301306.CrossRefGoogle ScholarPubMed
Cox, R.G. 1986 The dynamics of the spreading of liquids on a solid-surface. Part 1. Viscous-flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
De Gennes, P.G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.CrossRefGoogle Scholar
Ding, H., Li, E.Q., Zhang, F.H., Sui, Y., Spelt, P.D.M. & Thoroddsen, S.T. 2012 Propagation of capillary waves and ejection of small droplets in rapid droplet spreading. J. Fluid Mech. 697, 92114.CrossRefGoogle Scholar
Fair, R.B. 2007 Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3, 245281.CrossRefGoogle Scholar
Gordillo, J.M. & Rodríguez-Rodríguez, J. 2019 Capillary waves control the ejection of bubble bursting jets. J. Fluid Mech. 867, 556571.CrossRefGoogle Scholar
Hong, J. & Lee, S.J. 2015 Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting. Lab Chip 15 (3), 900907.CrossRefGoogle ScholarPubMed
Jeffreys, H. & Jeffreys, B. 1999 Methods of Mathematical Physics, 3rd edn. Cambridge University Press.CrossRefGoogle Scholar
Joanny, J.F. & de Gennes, P.G. 1984 A model for contact angle hysteresis. J. Chem. Phys. 81 (1), 552562.CrossRefGoogle Scholar
Jun Lee, S., Lee, S. & Kang, K.H. 2012 Droplet jumping by electrowetting and its application to the three-dimensional digital microfluidics. Appl. Phys. Lett. 100 (8), 081604.CrossRefGoogle Scholar
Keller, J.B. & Miksis, M.J. 1983 Surface tension driven flows. SIAM J. Appl. Maths 43 (2), 268277.CrossRefGoogle Scholar
Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J.A., Krupenkin, T. & Aizenberg, J. 2010 Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4 (12), 76997707.CrossRefGoogle ScholarPubMed
Mugele, F. & Baret, J.-C. 2005 Electrowetting: from basics to applications. J. Phys. Condens. Matter 17 (28), R705R774.CrossRefGoogle Scholar
Renardy, Y., Popinet, S., Duchemin, L., Renardy, M., Zaleski, S., Josserand, C., Drumright-Clarke, M.A., Richard, D., Clanet, C. & Quéré, D. 2003 Pyramidal and toroidal water drops after impact on a solid surface. J. Fluid Mech. 484 (484), 6983.CrossRefGoogle Scholar
Richard, D., Clanet, C. & Quéré, D. 2002 Contact time of a bouncing drop. Nature 417 (6891), 811.CrossRefGoogle ScholarPubMed
Taylor, G.I. 1959 The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253 (1274), 313321.Google Scholar
Vahabi, H., Wang, W., Mabry, J.M. & Kota, A.K. 2018 Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture. Sci. Adv. 4 (11), eaau3488.CrossRefGoogle ScholarPubMed
Vo, Q., Su, H. & Tran, T. 2018 Universal transient dynamics of electrowetting droplets. Sci. Rep. 8 (1), 836.CrossRefGoogle ScholarPubMed
Vo, Q. & Tran, T. 2018 Contact line friction of electrowetting actuated viscous droplets. Phys. Rev. E 97 (6), 063101.CrossRefGoogle ScholarPubMed
Vo, Q. & Tran, T. 2019 Critical conditions for jumping droplets. Phys. Rev. Lett. 123 (2), 024502.CrossRefGoogle ScholarPubMed
Vo, Q. & Tran, T. 2021 Droplet ejection by electrowetting actuation. Appl. Phys. Lett. 118 (2), 161603.CrossRefGoogle Scholar
Wang, Z., van den Ende, D., Pit, A., Lagraauw, R., Wijnperle, D. & Mugele, F. 2017 Jumping drops on hydrophobic surfaces, controlling energy transfer by timed electric actuation. Soft Matt. 13, 48564863.CrossRefGoogle ScholarPubMed
Zhang, F.H., Li, E.Q. & Thoroddsen, S.T. 2009 Satellite formation during coalescence of unequal size drops. Phys. Rev. Lett. 102 (10), 104502.CrossRefGoogle ScholarPubMed
Zhang, F.H., Thoraval, M.J., Thoroddsen, S.T. & Taborek, P. 2015 Partial coalescence from bubbles to drops. J. Fluid Mech. 782, 209239.CrossRefGoogle Scholar
Zhang, F.H. & Thoroddsen, S.T. 2008 Satellite generation during bubble coalescence. Phys. Fluids 20 (2), 022104.CrossRefGoogle Scholar