Skip to main content Accessibility help

Drops with insoluble surfactant squeezing through interparticle constrictions

  • Jacob R. Gissinger (a1), Alexander Z. Zinchenko (a1) and Robert H. Davis (a1)


The interfacial behaviour of surfactant-laden drops squeezing through tight constrictions in a uniform far-field flow is modelled with respect to capillary number, drop-to-medium viscosity ratio and surfactant contamination. The surfactant is treated as insoluble and non-diffusive, and drop surface tension is related to surfactant concentration by a linear equation of state. The constriction is formed by three solid spheres held rigidly in space. A characteristic aspect of this confined and contaminated multiphase system is the rapid development of steep surfactant-concentration gradients during the onset of drop squeezing. The interplay between two physical effects of surfactant, namely the greater interface deformability due to decreased surface tension and interface immobilization due to Marangoni stresses, results in particularly rich drop-squeezing dynamics. A three-dimensional boundary-integral algorithm is used to describe drop hydrodynamics, and accurate treatment of close squeezing and trapped states is enabled by advanced singularity subtraction techniques. Surfactant transport and hydrodynamics are coupled via the surface convection equation (or convection–diffusion equation, if artificial diffusion is included), the interfacial stress balance and a solid-particle contribution based on the Hebeker representation. For extreme conditions, such as drop-to-medium viscosity ratios significantly less than unity, it is found that upwind-biased methods are the only stable approaches for modelling surfactant transport. Two distinct schemes, upwind finite volume and flow-biased least squares, are found to provide results in close agreement, indicating negligible numerical diffusion. Surfactant transport is enhanced by low drop-to-medium viscosity ratios, at which extremely sharp concentration gradients form during various stages of the squeezing process. The presence of surfactant, even at low degrees of contamination, significantly decreases the critical capillary number for droplet trapping, due to the accumulation of surfactant at the downwind pole of the drop and its subsequent elongation. Increasing the degree of contamination significantly affects surface mobility and further decreases the critical capillary number as well as drop squeezing times, up to a threshold above which the addition of surfactant negligibly affects squeezing dynamics.


Corresponding author

Email addresses for correspondence:,


Hide All
Allan, R. S., Charles, G. E. & Mason, S. G. 1961 The approach of gas bubbles to a gas/liquid interface. J. Colloid Sci. 16 (2), 150165.
Anna, S. L. 2016 Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48 (1), 285309.
Barnocky, G. & Davis, R. H. 1989 The lubrication force between spherical drops, bubbles and rigid particles in a viscous fluid. Intl J. Multiphase Flow 15 (4), 627638.
Bazhlekov, I. B., Anderson, P. D. & Meijer, H. E. H. 2003 Boundary integral method for deformable interfaces in the presence of insoluble surfactants. In Large-Scale Scientific Computing, pp. 355362. Springer.
Bazhlekov, I. B., Anderson, P. D. & Meijer, H. E. H. 2006 Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J. Colloid Interface Sci. 298 (1), 369394.
Bordoloi, A. D. & Longmire, E. K. 2014 Drop motion through a confining orifice. J. Fluid Mech. 759, 520545.
Chen, Z., Dong, M., Husein, M. & Bryant, S. 2018 Effects of oil viscosity on the plugging performance of oil-in-water emulsion in porous media. Ind. Engng Chem. Res. 57 (21), 73017309.
Chesters, A. K. & Bazhlekov, I. B. 2000 Effect of insoluble surfactants on drainage and rupture of a film between drops interacting under a constant force. J. Colloid Interface Sci. 230 (2), 229243.
Dai, B. & Leal, L. G. 2008 The mechanism of surfactant effects on drop coalescence. Phys. Fluids 20 (4), 040802.
Davis, R. H., Schonberg, J. A. & Rallison, J. M. 1989 The lubrication force between two viscous drops. Phys. Fluids A 1 (1), 7781.
De Menech, M., Garstecki, P., Jousse, F. & Stone, H. A. 2008 Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 595, 141161.
Eggleton, C. D., Pawar, Y. P. & Stebe, K. J. 1999 Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385, 7999.
Farhat, H., Celiker, F., Singh, T. & Lee, J. S. 2011 A hybrid lattice Boltzmann model for surfactant-covered droplets. Soft Matt. 7 (5), 19681985.
Hosokawa, S., Masukura, Y., Hayashi, K. & Tomiyama, A. 2017 Experimental evaluation of Marangoni stress and surfactant concentration at interface of contaminated single spherical drop using spatiotemporal filter velocimetry. Intl J. Multiphase Flow 97, 157167.
de Jesus, W. C., Roma, A. M., Pivello, M. R., Villar, M. M. & da Silveira-Neto, A. 2015 A 3d front-tracking approach for simulation of a two-phase fluid with insoluble surfactant. J. Comput. Phys. 281, 403420.
Khatri, S. & Tornberg, A.-K. 2014 An embedded boundary method for soluble surfactants with interface tracking for two-phase flows. J. Comput. Phys. 256, 768790.
Klaseboer, E., Chevaillier, J. P., Gourdon, C. & Masbernat, O. 2000 Film drainage between colliding drops at constant approach velocity: experiments and modeling. J. Colloid Interface Sci. 229 (1), 274285.
Kovalchuk, N. M., Jenkinson, H., Miller, R. & Simmons, M. J. H. 2018 Effect of soluble surfactants on pinch-off of moderately viscous drops and satellite size. J. Colloid Interface Sci. 516, 182191.
Kruijt-Stegeman, Y. W., van de Vosse, F. N. & Meijer, H. E. H. 2004 Droplet behavior in the presence of insoluble surfactants. Phys. Fluids 16 (8), 27852796.
Lebon, L., Oger, L., Leblond, J., Hulin, J. P., Martys, N. S. & Schwartz, L. M. 1996 Pulsed gradient NMR measurements and numerical simulation of flow velocity distribution in sphere packings. Phys. Fluids 8 (2), 293301.
Lee, J. C. & Hodgson, T. D. 1968 Film flow and coalescence-I Basic relations, film shape and criteria for interface mobility. Chem. Engng Sci. 23 (11), 13751397.
Li, X. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341, 165194.
Lin, C.-Y. & Slattery, J. C. 1982 Thinning of a liquid film as a small drop or bubble approaches a solid plane. AIChE J. 28 (1), 147156.
Liu, H. & Zhang, Y. 2010 Phase-field modeling droplet dynamics with soluble surfactants. J. Comput. Phys. 229 (24), 91669187.
Milliken, W. J., Stone, H. A. & Leal, L. G. 1993 The effect of surfactant on the transient motion of Newtonian drops. Phys. Fluids A 5 (1), 6979.
Neitzel, G. P. & Dell’Aversana, P. 2002 Noncoalescence and nonwetting behavior of liquids. Annu. Rev. Fluid Mech. 34 (1), 267289.
Park, J. M., Hulsen, M. A. & Anderson, P. D. 2013 Numerical investigation of the effect of insoluble surfactant on drop formation in microfluidic device. Eur. Phys. J. 222 (1), 199210.
Ratcliffe, T., Zinchenko, A. Z. & Davis, R. H. 2010 Buoyancy-induced squeezing of a deformable drop through an axisymmetric ring constriction. Phys. Fluids 22 (8), 082101.
Riaud, A., Zhang, H., Wang, X., Wang, K. & Luo, G. 2018 Numerical study of surfactant dynamics during emulsification in a T-junction microchannel. Langmuir 34 (17), 49804990.
Smolarkiewicz, P. K. & Szmelter, J. 2005 MPDATA: an edge-based unstructured-grid formulation. J. Comput. Phys. 206 (2), 624649.
Stebe, K. J., Lin, S. Y. & Maldarelli, C. 1991 Remobilizing surfactant retarded fluid particle interfaces. I. Stressfree conditions at the interfaces of micellar solutions of surfactants with fast sorption kinetics. Phys. Fluids A 3 (1), 320.
Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.
Wrobel, J. K., Booty, M. R., Siegel, M. & Wang, Q. 2018 Simulation of surfactant-mediated tipstreaming in a flow-focusing geometry. Phys. Rev. Fluids 3 (11), 114003.
Xu, J.-J., Yang, Y. & Lowengrub, J. 2012 A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys. 231 (17), 58975909.
Yeo, L. Y., Matar, O. K., Perez de Ortiz, E. S. & Hewitt, G. F. 2003 Film drainage between two surfactant-coated drops colliding at constant approach velocity. J. Colloid Interface Sci. 257 (1), 93107.
Yon, S. & Pozrikidis, C. 1998 A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop. Comput. Fluids 27 (8), 879902.
Zinchenko, A. Z. & Davis, R. H. 2006 A boundary-integral study of a drop squeezing through interparticle constrictions. J. Fluid Mech. 564, 227266.
Zinchenko, A. Z. & Davis, R. H. 2013 Emulsion flow through a packed bed with multiple drop breakup. J. Fluid Mech. 725, 611663.
Zinchenko, A. Z. & Davis, R. H. 2017a General rheology of highly concentrated emulsions with insoluble surfactant. J. Fluid Mech. 816, 661704.
Zinchenko, A. Z. & Davis, R. H. 2017b Motion of deformable drops through porous media. Annu. Rev. Fluid Mech. 49 (1), 7190.
Zinchenko, A. Z., Rother, M. A. & Davis, R. H. 1997 A novel boundary-integral algorithm for viscous interaction of deformable drops. Phys. Fluids 9 (6), 14931511.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed