Skip to main content Accessibility help

Droplets walking in a rotating frame: from quantized orbits to multimodal statistics

  • Daniel M. Harris (a1) and John W. M. Bush (a1)


We present the results of an experimental investigation of a droplet walking on the surface of a vibrating rotating fluid bath. Particular attention is given to demonstrating that the stable quantized orbits reported by Fort et al. (Proc. Natl Acad. Sci., vol. 107, 2010, pp. 17515–17520) arise only for a finite range of vibrational forcing, above which complex trajectories with multimodal statistics arise. We first present a detailed characterization of the emergence of orbital quantization, and then examine the system behaviour at higher driving amplitudes. As the vibrational forcing is increased progressively, stable circular orbits are succeeded by wobbling orbits with, in turn, stationary and drifting orbital centres. Subsequently, there is a transition to wobble-and-leap dynamics, in which wobbling of increasing amplitude about a stationary centre is punctuated by the orbital centre leaping approximately half a Faraday wavelength. Finally, in the limit of high vibrational forcing, irregular trajectories emerge, characterized by a multimodal probability distribution that reflects the persistent dynamic influence of the unstable orbital states.


Corresponding author

Email address for correspondence:


Hide All
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. A 225, 505515.
de Broglie, L. 1926 Ondes et Mouvements. Gauthier-Villars.
de Broglie, L. 1987 Interpretation of quantum mechanics by the double solution theory. Ann. Fond. Louis de Broglie 12, 123.
de Bruyn, J. R., Lewis, B. C., Shattuck, M. D. & Swinney, H. L. 2001 Spiral patterns in oscillated granular layers. Phys. Rev. E 63, 041305.
Bush, J. W. M. 2010 Quantum mechanics writ large. Proc. Natl Acad. Sci. 107, 1745517456.
Couder, Y. & Fort, E. 2006 Single particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101.
Couder, Y., Fort, E., Gautier, C. H. & Boudaoud, A. 2005 From bouncing to floating: non-coalescence of drops on a fluid bath. Phys. Rev. Lett. 94, 177801.
Crommie, M. F., Lutz, C. P. & Eigler, D. M. 1993 Confinement of electrons to quantum corrals on a metal surface. Science 262, 218220.
Eddi, A., Fort, E., Moisy, F. & Couder, Y. 2009 Unpredictable tunneling of a classical wave–particle association. Phys. Rev. Lett. 102, 240401.
Eddi, A., Moukhtar, J., Perrard, S., Fort, E. & Couder, Y. 2012 Level splitting at macroscopic scale. Phys. Rev. Lett. 108, 264503.
Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M. & Couder, Y. 2011 Information stored in Faraday waves: the origin of path memory. J. Fluid Mech. 674, 433463.
Eddi, A., Terwagne, D., Fort, E. & Couder, Y. 2008 Wave propelled ratchets and drifting rafts. Europhys. Lett. 82, 44001.
Faraday, M. 1831 On the forms and states of fluids on vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 319340.
Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J. & Couder, Y. 2010 Path-memory induced quantization of classical orbits. Proc. Natl Acad. Sci. 107 (41), 1751517520.
Goldman, D. I. 2002 Pattern formation and fluidization of vibrated granular layers, and grain dynamics and jamming in a water fluidized bed. PhD thesis, University of Texas at Austin, Austin, TX.
Harris, D. M., Moukhtar, J., Fort, E., Couder, Y. & Bush, J. W. M. 2013 Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88, 011001.
Kumar, K. 1996 Linear theory of Faraday instability in viscous fluids. Proc. R. Soc. A 452, 11131126.
Moláček, J. & Bush, J. W. M. 2013a Drops bouncing on a vibrating bath. J. Fluid Mech. 727, 582611.
Moláček, J. & Bush, J. W. M. 2013b Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.
Oza, A., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2013a Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. (under review).
Oza, A., Rosales, R. R. & Bush, J. W. M. 2013b A trajectory equation for walking droplets. J. Fluid Mech. 737, 552570.
Oza, A., Wind-Willassen, Ø., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2013c Exotic orbits in hydrodynamic pilot-wave theory (in preparation).
Perrard, S., Labousse, M., Miskin, M., Fort, E. & Couder, Y. 2013 Memory driven wave–particle self-organization (under review).
Protière, S., Boudaoud, A. & Couder, Y. 2006 Particle wave association on a fluid interface. J. Fluid Mech. 554, 85108.
Reis, P. M., Ingale, R. A. & Shattuck, M. D. 2007 Forcing independent velocity distributions in an experimental granular fluid. Phys. Rev. E 75, 051311.
Walker, J. 1978 Drops of liquid can be made to float on the liquid. What enables them to do so? Sci. Am. 238–6, 151158.
Wind-Willassen, Ø., Moláček, J., Harris, D. M. & Bush, J. W. M. 2013 Exotic states of bouncing and walking droplets. Phys. Fluids 25, 082002.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed