Skip to main content Accessibility help

Drop deformation by laser-pulse impact

  • Hanneke Gelderblom (a1), Henri Lhuissier (a2), Alexander L. Klein (a1), Wilco Bouwhuis (a1), Detlef Lohse (a1), Emmanuel Villermaux (a3) and Jacco H. Snoeijer (a1) (a4)...


A free falling, absorbing liquid drop hit by a nanosecond laser pulse experiences a strong recoil pressure kick. As a consequence, the drop propels forward and deforms into a thin sheet which eventually fragments. We study how the drop deformation depends on the pulse shape and drop properties. We first derive the velocity field inside the drop on the time scale of the pressure pulse, when the drop is still spherical. This yields the kinetic energy partition inside the drop, which precisely measures the deformation rate with respect to the propulsion rate, before surface tension comes into play. On the time scale where surface tension is important, the drop has evolved into a thin sheet. Its expansion dynamics is described with a slender-slope model, which uses the impulsive energy partition as an initial condition. Completed with boundary integral simulations, this two-stage model explains the entire drop dynamics and its dependence on the pulse shape: for a given propulsion, a tightly focused pulse results in a thin curved sheet which maximizes the lateral expansion, while a uniform illumination yields a smaller expansion but a flat symmetric sheet, in good agreement with experimental observations.


Corresponding author

Email address for correspondence:


Hide All
Antkowiak, A., Bremond, N., Le Dizès, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following impact. J. Fluid Mech. 577, 241250.
Banine, V. Y., Koshelev, K. N. & Swinkels, G. H. P. M. 2011 Physical processes in euv sources for microlithography. J. Phys. D 44, 253001.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bergmann, R., van der Meer, D., Gekle, S., van der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381–409.
Bouwhuis, W., van der Veen, R., Tran, T., Keij, D., Winkels, K. G., Peters, I. R., van der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109 (26), 264501.
Bremond, N. & Villermaux, E. 2005 Bursting thin liquid films. J. Fluid Mech. 524, 121130.
Byerly, W. E. 1893 An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical and Ellipsoidal Harmonics with Applications to Problems in Mathematical Physics. Gin and Company.
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.
Cooker, M. J. & Peregrine, D. H. 1995 Pressure-impulse theory for liquid impact problems. J. Fluid Mech. 297, 193214.
Gekle, S., Peters, I. R., Gordillo, J., van der Meer, D. & Lohse, D. 2010 Supersonic air flow due to solid–liquid impact. Phys. Rev. Lett. 104, 24501.
Hicks, P. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.
Klein, A. L., Bouwhuis, W., Visser, C. W., Lhuissier, H., Sun, C., Snoeijer, J. H., Villermaux, E., Lohse, D. & Gelderblom, H. 2015 Drop shaping by laser-pulse impact. Phys. Rev. Appl. 3, 044018.
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M., Weitz, D. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 07450.
Mizoguchi, H., Abe, T., Watanabe, Y., Ishihara, T., Ohta, T., Hori, T., Yanagida, T., Nagano, H., Yabu, T., Nagai, S. et al. 2010 1st generation laser-produced plasma source system for hvm euv lithography. Proc. SPIE 7638, 76308.
Oguz, H. N. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.
Oguz, H. N. & Prosperetti, A. 1993 Dynamics of bubble-growth and detachment from a needle. J. Fluid Mech. 257, 111145.
Peters, I. R., van der Meer, D. & Gordillo, J. M. 2013 Splash wave and crown breakup after disc impact on a liquid surface. J. Fluid. Mech. 724, 553580.
Power, H. & Wrobel, L. C. 1995 Boundary Integral Methods in Fluid Mechanics. WIT Press.
Prosperetti, A. 2011 Advanced Mathematics for Applications. Cambridge University Press.
Riboux, G. & Gordillo, J. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113, 024507.
Riboux, G. & Gordillo, J. 2015 The diameters and velocities of the droplets ejected after splashing. J. Fluid Mech. 772, 630648.
Richard, D. & Quéré, D. 2000 Bounding water drops. Europhys. Lett. 50 (6), 769775.
Rozhkov, A., Prunet-Foch, B. & Vignes-Adler, M. 2004 Dynamics of a liquid lamella resulting from the impact of a water drop on a small target. Proc. R. Soc. Lond. A 460, 26812704.
Sun, C., Can, E., Dijkink, R., Lohse, D. & Prosperetti, A. 2009 Growth and collapse of a vapour bubble in a microtube: the role of thermal effects. J. Fluid Mech. 632, 516.
Tagawa, Y., Oudalov, N., Visser, C., Peters, I. R., van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2, 031002.
Thoroddsen, S., Takehara, K., Etoh, T. G. & Ohl, C.-D. 2009 Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101.
Vernay, C., Ramos, L. & Ligoure, C. 2015 Free radially expanding liquid sheet in air: time- and space-resolved measurement of the thickness field. J. Fluid Mech. 764, 428444.
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5, 697702.
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.
Vogel, A., Busch, S. & Parlitz, U. 1996 Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100 (1), 148165.
Xu, L., Barcos, L. & Nagel, S. R. 2007 Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76, 066311.
Yarin, A. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing … Annu. Rev. Fluid Mech. 38, 519592.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed