Skip to main content Accessibility help

Disks settling in turbulence

  • L. B. Esteban (a1), J. S. Shrimpton (a1) and B. Ganapathisubramani (a1)


This paper describes an experimental investigation of the dynamics of freely falling thin circular disks settling through turbulence. The patterns of the three-dimensional disk motion are studied using an orthogonal arrangement of two high speed cameras. Turbulence is generated in a water tank using a random jet array facility where the jets are mounted in a co-planar configuration. The facility is run continuously until turbulence reaches a statistically stationary state, then, all water pumps are turned off simultaneously and a disk is released after a given waiting time. Contrary to spherical particles, finite-size inertial disks show an increase in the descent velocity for turbulence velocity fluctuations smaller than the particle descent velocity in quiescent flow. Thus, we observe a severe increase of the mean descent velocity of the disk with increasing magnitude of the turbulence velocity fluctuations (up to $20\,\%$ of the velocity in quiescent flow for the disk with higher dimensionless inertia $I^{\ast }$ ). We also observe descent events that do not exist for disks falling in still fluid; i.e. ‘slow tumbling’ events and ‘levitating’ events. Finally, we show that the dominant frequency of the particle oscillatory motion decreases for increasing descent velocity and that particles exhibit oscillatory frequencies that never exceed the dominant frequency in quiescent flow by more than $30\,\%$ .


Corresponding author

Email address for correspondence:


Hide All
Aliseda, A., Cartellier, A., Hainaux, F. & Lasheras, J. C. 2002 Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77105.
Anand, P., Ray, S. S. & Subramanian, G.2019 Orientation dynamics of sedimenting anisotropic particles in turbulence. arXiv:1907.02857.
Andersen, A., Pesavento, U. & Wang, Z. J. 2005a Analysis of transitions between fluttering, tumbling and steady descent of falling cards. J. Fluid Mech. 541, 91104.
Andersen, A., Pesavento, U. & Wang, Z. J. 2005b Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech. 541, 6590.
Auguste, F., Magnaudet, J. & Fabre, D. 2013 Falling styles of disks. J. Fluid Mech. 719, 388405.
Bec, J., Homann, H. & Ray, S. S. 2014 Gravity-driven enhancement of heavy particle clustering in turbulent flow. Phys. Rev. Lett. 112, 184501.
Bellani, G. & Variano, E. A. 2013 Homogeneity and isotropy in a laboratory turbulent flow. Exp. Fluids 55, 16461666.
Belmonte, A., Eisenberg, H. & Moses, E. 1998 From flutter to tumble: intertial drag and froude similarity in falling paper. Phys. Rev. Lett. 81, 345348.
Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehlig, B. & Variano, E. 2015 Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27, 035101.
Carter, D., Petersen, A., Amili, O. & Coletti, F. 2016 Generating and controlling homogeneous air turbulence using random jet arrays. Exp. Fluids 57, 189.
Churst, M., Bouchet, G. & Dusek, J. 2013 Numerical simulation of the dynamics of freely falling discs. Phys. Fluids 25, 044102.
Esteban, L. B., Shrimpton, J. & Ganapathisubramani, B. 2019a Laboratory experiments on the temporal decay of homogeneous anisotropic turbulence. J. Fluid Mech. 862, 99127.
Esteban, L. B., Shrimpton, J. S. & Ganapathisubramani, B. 2018 Edge effects on the fluttering characteristics of freely falling planar particles. Phys. Rev. Fluids 3, 064302.
Esteban, L. B., Shrimpton, J. S. & Ganapathisubramani, B. 2019b Study of the circularity effect on drag of disk-like particles. Intl J. Multiphase Flow 110, 189197.
Field, S. B., Klaus, M., Moore, M. G. & Nori, F. 1977 Chaotic dynamics of falling disks. Nature 388, 252254.
Fornari, W., Picano, F. & Brandt, L. 2016 Sedimentation of finite-size spheres in quiescent and turbulent environments. J. Fluid Mech. 788, 640669.
Good, G. H., Gerashchenko, S. & Warhaft, Z. 2012 Intermittency and inertial particle entrainment at a turbulent interface: the effect of the large-scale eddies. J. Fluid Mech. 694, 371398.
Good, G.H., Ireland, P.J., Bewley, G.P., Bodenschatz, E., Collins, L.R. & Warhaft, Z. 2014 Settling regimes of inertial particles in isotropic turbulence. J. Fluid Mech. 759, R3.
Gustavsson, K., Sheikh, M. Z., Lopez, D., Naso, A., Pumir, A. & Mehlig, B.2019 Theory for the effect of fluid inertia on the orientation of a small particle settling in turbulence. arXiv:1904.00481.
Heisinger, L., Newton, P. & Kanso, E. 2014 Coins falling in water. J. Fluid Mech. 714, 243253.
Ho, H. W.1964 Fall velocity of a sphere in an oscillating fluid. PhD Thesis, University of Iowa, Iowa City, IA.
Ireland, P. J. & Collins, L. R. 2012 Direct numerical simulation of inertial particle entrainment in a shearless mixing layer. J. Fluid Mech. 704, 301332.
Jayaweera, K. O. L. F. 1972 An equivalent disc for calculating the terminal velocities of plate-like ice crystals. J. Atmos. Sci. 29, 596597.
Jayaweera, K. O. L. F. & Mason, B. J. 1965 The behaviour of freely falling cylinders and cones in a viscous fluid. J. Fluid Mech. 22, 709720.
Kawanisi, K. & Shiozaki, R. 2008 Turbulent effects on the settling velocity of suspended sediment. J. Hydraul. Engng 2, 261266.
Lee, C., Su, Z., Zhong, H., Chen, S., Zhou, M. & Wu., J. 2013 Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral. J. Fluid Mech. 732, 77104.
Mallier, R. & Maxey, M. 1991 The settling of nonspherical particles in a cellular flow field. Phys. Fluids A 3, 14811494.
Maxey, M. R. 1987 The gravitational settling of aerosol particle in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.
Maxey, M. R. & Corrsin, S. 1986 Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J. Atmos. Sci. 43, 11121134.
Murray, S. P. 1970 Settling velocities and vertical diffusion of particles in turbulent water. J. Geophys. Res. 75 (9), 16471654.
Nielsen, P. 1984 On the motion of suspended particles. J. Geophys. Res. 89, 616626.
Nielsen, P. 1992 Coastal Bottom Boundary Layers and Sediment Transport. World Scientific.
Nielsen, P. 1993 Turbulence effects on the settling of suspended particles. J. Sedim. Res. 63 (5), 835838.
Reeks, M. W. 1977 On the dispersion of small particles suspended in an isotropic turbulent fluid. J. Fluid Mech. 83, 529546.
Rosa, B., Parishani, H., Ayala, O. & Wang, L. P. 2016 Settling velocity of small inertial particles in homogeneous isotropic turbulence from high-resolution DNS. Intl J. Multiphase Flow 83, 217231.
Siewert, C., Kunnen, R. P. J., Meinke, M. & Schroder, W. 2014 Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 4556.
Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids 3, 11691178.
Tom, J. & Bragg, A. 2019 Multiscale preferential sweeping of particles settling in turbulence. J. Fluid Mech. 871, 244270.
Variano, E. A. & Cowen, E. A. 2008 A random-jet-stirred turbulence tank. J. Fluid Mech. 604, 132.
Voth, G. A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.
Wang, L. P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.
Willmarth, W. W., Hawk, N. E. & Harvey, R. L. 1964 Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids 7, 197208.
Yang, C. Y. & Lei, U. 1998 The role of the turbulent scales in the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 371, 179205.
Yang, T. S. & Shy, S. S. 2003 The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys. Fluids 15 (4), 868880.
Yang, T. S. & Shy, S. S. 2005 Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements. J. Fluid Mech. 526, 171216.
Zhong, H., Chen, S. & Lee, C. 2011 Experimental study of freely falling thin disks: transition from planar zigzag to spiral. Phys. Fluids 23, 011702.
Zhong, H., Lee, C., Su, Z., Chen, S., Zhou, M. & Wu., J. 2013 Experimental investigation of freely falling thin disks. Part 1. The flow structures and Reynolds number effects on the zigzag motion. J. Fluid Mech. 716, 228250.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Disks settling in turbulence

  • L. B. Esteban (a1), J. S. Shrimpton (a1) and B. Ganapathisubramani (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed