Skip to main content Accessibility help

Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds

  • J. J. DERKSEN (a1) and S. SUNDARESAN (a2)


We present results of direct numerical simulations of travelling waves in dense assemblies of monodisperse spherical particles fluidized by a liquid. The cases we study have been derived from the experimental work of others. In these simulations, the flow of interstitial fluid is solved by the lattice-Boltzmann method (LBM) and the particles move under the influence of gravity, hydrodynamic forces stemming from the LBM, subgrid-scale lubrication forces and hard-sphere collisions. We first show that the propagating inhomogeneous structures seen in the simulations are in agreement with those observed experimentally. We then use the detailed information contained in the simulation results to assess aspects of two-fluid model closures, namely, fluid–particle drag, and the various contributions to the effective stresses. We show that the rates of compaction and dilation of the particle phase in the travelling waves are comparable to the rate at which the microstructure relaxes, and that there is a pronounced effect of the rate of compaction on the average collisional normal stress. Although this effect can be expressed as an effective bulk viscosity term, this approach would require the use of a path-dependent bulk viscosity. We also find that the effective fluid–particle drag coefficient can be described well with the often-used closure motivated by the experiments of Richardson & Zaki (Trans. Inst. Chem. Engng vol. 32, 1954, p. 35). In this respect, the effect of the system size for determining the drag requires specific care. The shear viscosity of the particle phase manifests small, but clearly noticeable dependence on the rate of compaction/dilation of the particle phase. Our observations point to the need for higher-order closures that recognize the slow evolution of the microstructure in these flows and account for the effects of non-equilibrium microstructure on the stresses.



Hide All
Agrawal, K., Loezos, P. N., Syamlal, M. & Sundaresan, S. 2001 The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech. 445, 151185.
Aidun, C. K., Lu, Y. & Ding, E. J. 1998 Direct analysis of particle suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.
Anderson, K., Sundaresan, S. & Jackson, R. 1995 Instabilities and the formation of bubbles in fluidized beds. J. Fluid Mech. 303, 327366.
Anderson, T. B. & Jackson, R. 1969 A fluid mechanical description of fluidized beds – comparison of theory and experiment. Indust. Engng Chem. Fund. 8, 137144.
Auton, T. R., Hunt, J. C. R. & Prud'homme, M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.
Batchelor, G. K. 1988 A new theory of the instability of a uniform fluidized bed. J. Fluid Mech. 193, 75110.
Brady, J. F., Khair, A. S. & Swaroop, M. 2006 On the bulk viscosity of suspensions. J. Fluid Mech. 554, 109123.
Chen, S. & Doolen, G. D. 1998 Lattice–Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.
Cichocki, B.. & Jones, R. B. 1998 Image representation of a spherical particle near a hard wall. Physica A 258, 273302.
Derksen, J. & Vanden Akker, H. E. A. den Akker, H. E. A. 1999 Large-eddy simulations on the flow driven by a Rushton turbine. AIChE J. 45, 209221.
Didwania, A. K. & Homsy, G. M. 1981 Flow regime and flow transitions in liquid-fluidized beds. Intl J. Multiphase Flo. 7, 563580.
Duru, P. & Guazelli, E. 2002 Experimental investigations on the secondary instability of liquid-fluidized beds and the formation of bubbles. J. Fluid Mech. 470, 359382.
Duru, P., Nicolas, M., Hinch, J. & Guazelli, E. 2002 Constitutive laws in liquid-fluidized beds. J. Fluid Mech. 452, 371404.
Eggels, J. G. M. & Somers, J. A. 1995 Numerical simulation of free convective flow using the lattice-Boltzmann scheme. Intl J. Heat Fluid Flo. 16, 357364.
El-Kaissy, M. M. & Homsy, G. M. 1976 Instability waves and the origin of bubbles fluidized beds. Part 1: Experiments. Intl J. Multiphase Flo. 2, 379395.
Gidaspow, D. 1994 Multiphase Flow and Fluidization. Academic Press, CA.
Glasser, B. J., Kevrekidis, I. G. & Sundaresan, S. 1996 One- and two-dimensional travelling wave solutions in gas-fluidized beds. J. Fluid Mech. 306, 183221.
Glasser, B. J., Kevrekidis, I. G. & Sundaresan, S. 1997 Fully developed travelling wave solutions and bubble formation in fluidized beds. J. Fluid Mech. 334, 157188.
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105, 354366.
Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids. Phys. Fluid. 14, 643652.
Griffith, B. E. & Peskin, C. S. 2005 On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems. J. Comput. Phys. 208, 75105.
Ham, J. M., Thomas, S., Guazzelli, E., Homsy, G. M. & Anselmet, M. C. 1990 An experimental study of the stability of liquid-fluidized beds. Intl J. Multiphase Flo. 16,171185.
Hill, R. J., Koch, D. L. & Ladd, A. J. C. 2001 Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 243278.
vander Hoef, M. A. der Hoef, M. A., Beetstra, R. & Kuipers, J. A. M. 2005 Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force. J. Fluid Mech. 528, 233254.
Jackson, R. 2000 Dynamics of Fluidized particles. Cambridge University Press.
Joseph, G. G., Zenit, R., Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle–wall collisions in a viscous fluid. J. Fluid Mech. 433, 329346.
Kandhai, D., Derksen, J. J. & Vanden Akker, H. E. A. den Akker, H. E. A. 2003 Interphase drag coefficients in gas–solid flows. AIChE J. 49, 10601065.
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth–Heinemann.
Koch, D. L. & Sangani, A. S. 1999 Particle pressure and marginal stability limits for a homogeneous monodisperse gas fluidized bed: kinetic theory and numerical simulations. J. Fluid Mech. 400, 229263.
Ladd, A. J. C. 1994a Numerical simulations of particle suspensions via a discretized Boltzmann equation. Part 1. Theoretical Foundation. J. Fluid Mech. 271, 285309.
Ladd, A. J. C. 1994b Numerical simulations of particle suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311339.
Ladd, A. J. C. 1997 Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluid. 9, 491499.
Li, J. & Kuipers, J. A. M. 2003 Gas–particle interactions in dense gas-fluidized beds. Chem. Engng Sci. 58, 711718.
Lovalenti, P. M. & Brady, J. F. 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256, 561605.
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N. 1984 Kinetic theories for granular flow – inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 140, 223256.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluid. 26, 883889.
Nguyen, N.-Q. & Ladd, A. J. C. 2002 Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. 1rm E. 66, 046708.
Pan, T. W., Joseph, D. D., Bai, R., Glowinski, R. & Sarin, V. 2002 Fluidization of 1204 spheres: simulation and experiment. J. Fluid Mech. 451, 169191.
Poletto, M., Bai, R. & Joseph, D. D. 1995 Propagation of voidage waves in a two-dimensional liquid-fluidized bed. Intl J. Multiphase Flo. 21, 223239.
Potapov, A. V., Hunt, M. L. & Campbell, C. S. 2001 Liquid–solid flows using smoothed particle hydrodynamics and the discrete element method. Powder Technol. 116, 204213.
Qian, Y. H., d'Humieres, D. & Lallemand, P. 1992 Lattice BGK for the Navier–Stokes equations. Europhys. Lett. 17, 479484.
Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidization. Part 1. Trans. Inst. Chem. Engn. 32, 3553.
Schiller, L. & Naumann, A. 1933 Uber die grundlagenden Berechnungen bei der Schwerkraftaufbereitung. Ver. Deut. Ing. Z. 77, 318320.
Singh, P. & Joseph, D. D. 1995 Dynamics of fluidized suspensions of spheres of finite size. Intl J. Multiphase Flo. 21, 126.
Singh, P., Hesla, T. I. & Joseph, D. D. 2003 Distributed Lagrange multiplier method for particulate flows with collisions. Intl J. Multiphase Flo. 29, 495509.
Somers, J. A. 1993 Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann equation. Appl. Sci. Res. 51, 127133.
Sundaresan, S. 2003 Instabilities in fluidized beds. Annu. Rev. Fluid Mech. 35, 6388.
TenCate, A. Cate, A. & Sundaresan, S. 2006a Analysis of flow in inhomogeneous particle beds using the spatially averaged two-fluid equations. Intl J. Multiphase Flo. 36, 106131.
TenCate, A. Cate, A. & Sundaresan, S. 2006b Analysis of unsteady forces in ordered arrays. J. Fluid Mech. 552, 257287.
Ten Cate, A., Nieuwstad, C. H., Derksen, J. J. & Vanden Akker, H. E. A. den Akker, H. E. A. 2002 PIV experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluid. 14, 40124025.
Ten Cate, A., Derksen, J. J., Portela, L. M. & Vanden Akker, H. E. A. den Akker, H. E. A. 2004 Fully resolved simulations of colliding spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233271.
Torquato, S., Truskett, T. M. & Debenedetti, P. G. 2000 Is random close packing of spheres well defined? Phys. Rev. Lett. 84, 20642067.
Verberg, R. & Koch, D. L. 2006 Rheology of particle suspensions with low to moderate fluid inertia at finite particle inertia. Phys. Fluid. 18, 083303-1-16.
Wang, J. W. & Ge, W. 2005 Collisional particle phase pressure in particle–fluid flows at high particle inertia. Phys. Fluid. 17,128103-1-3.
Wylie, J. J., Koch, D. L. & Ladd, A. J. C. 2003 Rheology of suspensions with high particle inertia and moderate fluid inertia. J. Fluid Mech. 480, 95118.
Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T. & Tsuji, Y. 2001 Large-eddy simulation of turbulent gas–particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303334.
Yang, F.-L. & Hunt, M. L. 2006 Dynamics of particle–particle collisions in a viscous liquid. Phys. Fluid. 18, 121506-1-11.
Zenit, R. & Hunt, M. L. 2000 Solid fraction fluctuations in solid-liquid flows. Intl J. Multiphase Flo. 26, 763781.
Zenit, R., Hunt, M. & Brennen, C. E. 1997 Collisional particle pressure measurements in solid–liquid flows. J. Fluid Mech. 353, 261283.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds

  • J. J. DERKSEN (a1) and S. SUNDARESAN (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.