Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-11T05:41:49.092Z Has data issue: false hasContentIssue false

Direct numerical simulations of a rapidly expanding thermal plume: structure and entrainment interaction

Published online by Cambridge University Press:  14 May 2008

FRÉDÉRIC PLOURDE
Affiliation:
Laboratoire d'Etudes Thermiques, Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Cedex, France
MINH VUONG PHAM
Affiliation:
Laboratoire d'Etudes Thermiques, Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Cedex, France
SON DOAN KIM
Affiliation:
Laboratoire d'Etudes Thermiques, Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Cedex, France
S. BALACHANDAR
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA

Abstract

We examine the development of a thermal plume originating from a localized heat source using direct numerical simulation. The Reynolds number of the plume, based on source diameter and the characteristic buoyancy velocity, is chosen to be 7700, which is sufficiently large so that the flow turns to a fully turbulent state. A highly resolved grid of 622 million points is used to capture the entire range of turbulent scales in the plume. Here at the source, only heat has been added with no mass or momentum addition and accordingly the vertical evolution of the mass, momentum and buoyancy fluxes computed from the simulation have been verified to follow those of a pure thermal plume. The computed vertical evolution of the time-averaged centreline velocity and temperature are in good agreement with available experimental measurements. Investigation of the time evolution of the plume shows periodic formation of vortex ring structure surrounding the main ascending column of hot fluid. The vortex ring forms very close to the heat source and even at formation it is three-dimensional. The vortex ring ascends with the plume and at an elevation of about two diameters it strongly interacts with and destabilizes the central column and subsequently a complex turbulent flow arises. Thus, relatively laminar, transitional and fully turbulent regimes of the plume evolution can be identified. In the fully turbulent regime, complex three-dimensional hairpin-like vortex structures are observed; but vestiges of the coherent vortex rolls that form close to the source can be observed in the turbulent statistics. It is shown that local entrainment consists of contraction and expulsion phases. Such instantaneous mechanisms drive the entrainment process, and the instantaneous entrainment coefficient shows large variation in both time and space with local values up to three times higher than the average entrainment level. Such findings support the view that entrainment mechanisms in plumes should be considered from an unsteady point of view. Movies are available with the online version of the paper.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agator, J. M. & Doan, K. S. 1982 Turbulence structure of axisymmetric thermal plumes. Mech. Res. Commun. 9, 159164.CrossRefGoogle Scholar
Bastiaans, R. J. M., Rindt, C. C. M., Nieuwstadt, F. T. M. & Van Steenhoven, A. A. 2000 Direct and large-eddy simulation of the transition of two- and three-dimensional plane plumes in a confined enclose. Intl J. Heat Mass Transfer 43, 23752393.CrossRefGoogle Scholar
Basu, A. J. & Narasimha, R 1999 Direct numerical simulation of turbulent flows with cloud-like off-source heating. J. Fluid Mech. 385, 199228.CrossRefGoogle Scholar
Bill, R. R. & Gebhart, B 1975 The transition of plane plumes. Intl J. heat Mass Transfer 18, 513526.CrossRefGoogle Scholar
Billeter, L. & Fannelop, T. K. 1989 Gas concentration over an underwater gas release. Atmos. Environ. 23, 16831694.CrossRefGoogle Scholar
Bhat, G. S. & Narasimha, R. 1996 Volumetrically heated jet: large eddy structure and entrainment characteristics. J. Fluid Mech. 329, 303330.Google Scholar
Brahimi, M. & Doan, K. S. 1985 Interaction between two turbulent plumes in close proximity. Mech. Res. Commun. 12, 149155.CrossRefGoogle Scholar
Cantero, M. I., Balachandar, S., Garcia, M. H. & Ferry, J. P. 2006 Direct numerical simulations of planar and cylindrical density currents. J. Appl. Mech. 73, 923930.CrossRefGoogle Scholar
Cantero, M. I., Lee, J. R., Balachandar, S. & Garcia, M. H. 2007 On the front velocity of gravity currents. J. Fluid Mech. 586, 139.CrossRefGoogle Scholar
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.Google Scholar
Cook, A. W. & Riley, J. J. 1996 Direct numerical simulation of a turbulent reactive plume on a parallel computer. J. Comput. Phys. 129, 263283.CrossRefGoogle Scholar
Cortese, T. & Balachandar, S. 1993 Vortical nature of thermal plumes in turbulent convection. Phys. Fluids A 5, 32263232.CrossRefGoogle Scholar
Desrayaud, G. & Lauriat, G. 1993 Unsteady unconfined buoyant plumes. J. Fluid Mech. 252, 617646.CrossRefGoogle Scholar
Dibble, R. W., Schefer, R. W., Chen, J. Y. & Hartmann, V. 1987 Velocity and density measurements in a turbulent nonpremixed flame with comparison to numerical model predictions. Sandia Rep. SAND85-8233. UC-304.Google Scholar
Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 17911796.CrossRefGoogle Scholar
Fannelop, T. K. & Webber, D. M. 2003 On buoyant plumes rising from area sources in a calm environment. J. Fluid Mech. 497, 319334.CrossRefGoogle Scholar
George, W. K., Alpert, R. L. & Tamanini, F. 1977 Turbulence measurements in an axisymmetric experiment on a round turbulent buoyant plume. Intl J. Heat Mass Transfer 20, 11451154.CrossRefGoogle Scholar
Hunt, G. R. & Kaye, N. G. 2000 Virtual origin correction for lazy turbulent plumes. J. Fluid Mech. 435, 377396.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. A. & Moin, P. 1988 Eddies; stream and convergence zones in turbulent flows. Proc. Summer Program of the Centre for Turbulence Research, NASA Ames/Stanford University, pp. 193207.Google Scholar
Kaye, N. B. & Linden, P. F. 2003 Coalescing axisymmetric turbulent plumes of vortex. J. Fluid Mech. 502, 4163.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. D. 1987 Turbulent statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Lessani, B. & Papalexandris, M. V. 2006 Time-accurate calculation of variable density flows with strong temperature gradients and combustion. J. Comput. Phys. 212, 218246.CrossRefGoogle Scholar
Liedtke, J. & Schatzmann, M. 1997 Dispersion from strongly buoyant sources. Final Rep. EU-Project EV5V-CT-93-0262. University of Hamburg, Meteorological Institute.Google Scholar
List, E. J. 1982 Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14, 189212.CrossRefGoogle Scholar
Kotsovinos, N. E. 1991 Turbulence spectra in free convection flow. Phys. Fluids 3, 163167.CrossRefGoogle Scholar
Majda, A. & Sethian, J. 1985 The derivation and numerical solution of the equations for zero mach number combustion. Combust. Sci. Technol. 42, 185205.CrossRefGoogle Scholar
Meneveau, C. & Katz, J. 2000 Scale invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 132.CrossRefGoogle Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539578.CrossRefGoogle Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
Nakagomeka, H. & Hirata, K. 1976 The structure of turbulent diffusion in an axi-symmetrical thermal plume. Proc. ICHMT Conference on Turbulent Buoyant Convection, pp. 361–372.Google Scholar
Noto, K., Teramoto, K. & Nakajima, T. 1999 Spectra and critical Grashof numbers for turbulent transition in a thermal plume. J. Thermophys. Heat Transfer 13, 8290.CrossRefGoogle Scholar
Papanicolou, P. N. & List, E. J. 1988 Investigations of round vertical turbulent buoyant jets. J. Fluid Mech. 195, 341391.CrossRefGoogle Scholar
Pham, M. V., Plourde, F. & Doan, K. S. 2005 Three dimensional characterization of a pure thermal plume. J. Heat Transfer 127, 624636.CrossRefGoogle Scholar
Pham, M. V., Plourde, F. & Doan, K. S. 2006 a Effect of swirl on pure turbulent thermal plume development. Intl J. Heat Fluid Flow 27 502513.CrossRefGoogle Scholar
Pham, M. V., Plourde, F., Doan, K. S. & Balachandar, S. 2006 b Large-eddy simulation of a pure thermal plume under rotating conditions. Phys. Fluids 18 118.CrossRefGoogle Scholar
Rooney, G. G. & Linden, P. F. 1996 Similarity considerations for non-Boussinesq plumes in an unstratified environment. J. Fluid Mech. 318, 237250.CrossRefGoogle Scholar
Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11, 2132.CrossRefGoogle Scholar
Shabbir, A. & George, W. K. 1994 Experiments on a round turbulent buoyant plume. J. Fluid Mech. 275, 132.CrossRefGoogle Scholar
da Silva, C. B. & Métais, O. 2002 On the influence of coherent structures upon interscale interactions in turbulent plane jets. J. Fluid Mech. 473, 103145.CrossRefGoogle Scholar
Stanley, S. A., Sarkar, S. & Mellado, J. P. 2001 A study of the flow field evolution and mixing planar turbulent jet using direct numerical simulaiton. J. Fluid Mech. 450, 377407.CrossRefGoogle Scholar
Soteriou, M. C., Dong, Y. & Cetegen, B. M. 2002 Lagrangian simulation of unsteady near field dynamics of planar buoyant plumes. Phys. Fluids 14 (9), 31183140.Google Scholar
Sreenivas, K. R. & Prasad, A. K. 2000 Vortex-dynamics model for entrainment in jets and plumes. Phys. Fluids 12 (8), 21012107.CrossRefGoogle Scholar
Taylor, G. 1958 Flow induced by jets. J. Aerospace Sci. 25, 464465.Google Scholar
Turner, J. S 1969 Buoyant plumes and thermals. Annu. Rev. Fluid Mech. 1, 2944.Google Scholar
Urbin, G. & Métais, O. 1997 Large-eddy simulations of three-dimensional spatially-developing round jets. Direct and Large-Eddy Simulations II (ed. Chollet, J. P., Voke, P. R. & Kleiser, L.. Kluwer).Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar
Zhou, X., Luo, K. H. & Williams, J. J. R. 2000 Large-eddy simulation of a turbulent forced plume. Eur. J. Mech. B/Fluids, 20, 233254.Google Scholar

Plourde et al. supplementary movie

Movie 1. A three-dimensional isosurface of vorticity with time; a puffing mechanism, i.e. vorticity concentration, in the very close vicinity of the source is detected. The flow is computed by direct numerical simulation in a square domain of 5Dx5Dx8D (where D is the diameter of the circular heat source) and with grid resolution of 720x720x1200. The Reynolds number of the plume, based on source diameter and characteristic buoyant velocity, is 7700. Above the vertical location of the puffing phenomenon a more complex topology is observed and an intense vortical region is mainly organized as hairpin structures. These vortex structures principally populate the high-shear region that surrounds the main ascendant flow field. The hairpin vortical structures clearly interlace with each other in a complex way as is typically the case in a turbulent flow. Simulated time shown is 27 time units. The movie corresponds to figure 4 in the paper.

Download Plourde et al. supplementary movie(Video)
Video 7.1 MB

Plourde et al. supplementary movie

Movie 2. To better emphasize structures involved in the main ascendant process, the same data were used to compute the imaginary part of the complex-conjugate eigenvalues of the local velocity gradient tensor. Structures are mainly hairpin shaped, rolling around the main ascendant flow. In addition, it is obvious that strong interactions between structures develop at the periphery of the plume where dissipation is driven by buoyancy.

Download Plourde et al. supplementary movie(Video)
Video 7.5 MB