Skip to main content Accessibility help
×
Home

Direct numerical simulation of turbulent channel flow with spanwise rotation

  • Zhenhua Xia (a1) (a2), Yipeng Shi (a1) (a2) and Shiyi Chen (a1) (a2) (a3) (a4)

Abstract

A series of direct numerical simulations of turbulent channel flow with spanwise rotation at fixed global friction Reynolds number is performed to investigate the rotation effects on the mean velocity, streamwise velocity fluctuations, Reynolds shear stress and turbulent kinetic energy. The global friction Reynolds number is chosen to be $Re_{{\it\tau}}=u_{{\it\tau}}^{\ast }h^{\ast }/{\it\nu}^{\ast }=180$ ( $u_{{\it\tau}}^{\ast }$ is the global friction velocity, $h^{\ast }$ is the channel half-width and ${\it\nu}^{\ast }$ is the kinematic viscosity), while the global-friction-velocity-based rotation number $Ro_{{\it\tau}}=2{\it\Omega}^{\ast }h^{\ast }/u_{{\it\tau}}^{\ast }$ ( ${\it\Omega}^{\ast }$ is the dimensional angular velocity) varies from 0 to 130. In the previously reported $2{\it\Omega}^{\ast }$ -slope region for the mean velocity, a linear behaviour for the streamwise velocity fluctuations, a unit-slope linear profile for the Reynolds shear stress and a $-2Ro_{{\it\tau}}$ -slope linear profile for the production term of $\langle u^{\prime }u^{\prime }\rangle$ have been identified for the first time. The critical rotation number, which corresponds to the laminar limit, is predicted to be equal to $Re_{{\it\tau}}$ according to the unit-slope linear profile of the Reynolds shear stress. Our results also show that a parabolic profile of the mean velocity can be identified around the ‘second plateau’ region of the Reynolds shear stress for $Ro_{{\it\tau}}\geqslant 22$ . The parabolas at different rotation numbers have the same shape of $1/Re_{{\it\tau}}$ , the radius of curvature at the vertex. Furthermore, the system rotation increases the volume-averaged turbulent kinetic energy at lower rotation rates, and then decreases it when $Ro_{{\it\tau}}\gtrsim 16$ .

Copyright

Corresponding author

Email address for correspondence: xiazh1006@gmail.com

References

Hide All
Alvelius, K.1999 Studies of turbulence and its modelling through large eddy- and direct numerical simulation. PhD thesis, Department of Mechanics, KTH Stockholm, Sweden.
Grundestam, O., Wallin, S. & Johansson, A. V. 2008a Direct numerical simulations of rotating turbulent channel flow. J. Fluid Mech. 598, 177199.
Grundestam, O., Wallin, S. & Johansson, A. V. 2008b A priori evaluations and least-squares optimizations of turbulence models for fully developed rotating turbulent channel flow. Eur. J. Mech. (B/Fluids) 27, 7595.
Hamba, F. 2006 The mechanism of zero mean absolute vorticity state in rotating channel flow. Phys. Fluids 18, 125104.
Huang, Y. N., Ma, H. Y. & Xu, J. L. 2008 On applying the extended intrinsic mean spin tensor to modelling the turbulence in non-inertial frames of reference. Sci. China G 51, 16911706.
Jakirlić, S., Hanjalić, K. & Tropea, C. 2000 Modeling rotating and swirling turbulent flows: a perpetual challenge. Phys. Fluids 12, 19791985.
Johnston, J. P. 1998 Effects of system rotation on turbulence structure: a review relevant to turbomachinery flows. Intl J. Rotating Mach. 4, 97112.
Johnston, J. P., Halleen, R. M. & Lezius, D. K. 1972 Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech. 56, 533559.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Kristoffersen, R. & Andersson, H. I. 1993 Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech. 256, 163197.
Lamballais, E., Lesieur, M. & Métais, O. 1996 Effects of spanwise rotation on the vorticity stretching in transitional and turbulent channel flow. Intl J. Heat Fluid Flow 17, 324332.
Lamballais, E., Métais, O. & Lesieur, M. 1998 Spectral-dynamic model for large-eddy simulations of turbulent rotating channel flow. Theor. Comput. Fluid Dyn. 12, 146177.
Launder, B. E., Tselepidakis, D. P. & Younis, B. A. 1987 A second-moment closure study of rotating channel flow. J. Fluid Mech. 183, 6375.
Liu, N. S., Lu, X. Y. & Zhuang, L. X. 2004 An improved dynamic subgrid-scale model and its application to large eddy simulation of rotating channel flows. Sci. China G 47, 463476.
Maciel, Y., Picard, D., Yan, G. & Dumas, G.2003 Fully developed turbulent channel flow subject to system rotation. AIAA Paper, 2003–4153.
Marstorp, L., Brethouwer, G., Grundestam, O. & Johansson, A. 2009 Explicit algebraic subgrid stress models with application to rotating channel flow. J. Fluid Mech. 639, 403432.
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
Meneveau, C. & Marusic, I. 2013 Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech. 719, R1.
Nakabayashi, K. & Kitoh, O. 1996 Low Reynolds number fully developed two-dimensional turbulent channel flow with system rotation. J. Fluid Mech. 315, 129.
Nakabayashi, K. & Kitoh, O. 2005 Turbulence characteristics of two-dimensional channel flow with system rotation. J. Fluid Mech. 528, 355377.
Perry, A. E., Henbest, S. M. & Chong, M. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.
Piomelli, U. & Liu, J.H. 1994 Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 7, 839848.
Spalart, R., Moser, R. D. & Rogers, M. 1991 Spectral methods for the Navier–Stokes equations with one infinte and two periodic directions. J. Comput. Phys. 96, 297324.
Stevens, R. J. A. M., Wilczek, M. & Meneveau, C. 2014 Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888907.
Tafti, D. K. & Vanka, S. P. 1990 A numerical study of the effects of spanwise rotation on turbulent channel flow. Phys. Fluids A 3, 642656.
Yang, Y. T. & Wu, J. Z. 2012 Channel turbulence with spanwise rotation studied using helical wave decomposition. J. Fluid Mech. 692, 137152.
Yang, Z. X., Cui, G. X., Zhang, Z. S. & Xu, C. X. 2012 A modified nonlinear sub-grid scale model for large eddy simulation with application to rotating turbulent channel flows. Phys. Fluids 24, 075113.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed