Skip to main content Accessibility help
×
×
Home

Direct numerical simulation of turbulent channel flow over a surrogate for Nikuradse-type roughness

  • M. Thakkar (a1), A. Busse (a2) and N. D. Sandham (a1)

Abstract

A tiled approach to rough surface simulation is used to explore the full range of roughness Reynolds numbers, from the limiting case of hydrodynamic smoothness up to fully rough conditions. The surface is based on a scan of a standard grit-blasted comparator, subsequently low-pass filtered and made spatially periodic. High roughness Reynolds numbers are obtained by increasing the friction Reynolds number of the direct numerical simulations, whereas low roughness Reynolds numbers are obtained by scaling the surface down and tiling to maintain a constant domain size. In both cases, computational requirements on box size, resolution in wall units and resolution per minimum wavelength of the rough surface are maintained. The resulting roughness function behaviour replicates to good accuracy the experiments of Nikuradse (1933 VDI-Forschungsheft, vol. 361), suggesting that the processed grit-blasted surface can serve as a surrogate for his sand-grain roughness, the precise structure of which is undocumented. The present simulations also document a monotonic departure from hydrodynamic smooth-wall results, which is fitted with a geometric relation, the exponent of which is found to be inconsistent with both the Colebrook formula and an earlier theoretical argument based on low-Reynolds-number drag relations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Direct numerical simulation of turbulent channel flow over a surrogate for Nikuradse-type roughness
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Direct numerical simulation of turbulent channel flow over a surrogate for Nikuradse-type roughness
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Direct numerical simulation of turbulent channel flow over a surrogate for Nikuradse-type roughness
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: M.Thakkar@soton.ac.uk

References

Hide All
Barros, J. M., Schultz, M. P. & Flack, K. A.2017 Measurements of skin-friction of systematically generated surface roughness. In 10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA. http://www.tsfp-conference.org/proceedings/2017/2/297.pdf.
Bradshaw, P. 2000 A note on ‘critical roughness height’ and ‘transitional roughness’. Phys. Fluids 12, 16111614.
Busse, A., Lützner, M. & Sandham, N. D. 2015 Direct numerical simulation of turbulent flow over a rough surface based on a surface scan. Comput. Fluids 116, 129147.
Busse, A., Thakkar, M. & Sandham, N. D. 2017 Reynolds number dependence of the near-wall flow over irregular rough surfaces. J. Fluid Mech. 810, 196224.
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2015 A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid Mech. 771, 743777.
Flack, K. A., Schultz, M. P., Barros, J. M. & Kim, Y. C. 2016 Skin-friction behaviour in the transitionally-rough regime. Intl J. Heat Fluid Flow 61, 2130.
Flack, K. A., Schultz, M. P. & Rose, W. B. 2012 The onset of roughness effects in the transitionally rough regime. Intl J. Heat Fluid Flow 35, 160167.
Hager, W. H. & Liiv, U. 2008 Johann Nikuradse – hydraulic experimenter. J. Hydraul. Res. 46 (4), 435444.
Jiménez, J. 2004 Turbulent flow over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Krogstad, P.-Å. & Antonia, R. A. 1999 Surface roughness effects in turbulent boundary layers. Exp. Fluids 27, 450460.
Ligrani, P. M. & Moffat, R. J. 1986 Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162, 6998.
Mohajeri, S. H., Grizzi, S., Righetti, M., Romano, G. P. & Nikora, V. 2015 The structure of gravel-bed flow with intermediate submergence: a laboratory study. Water Resour. Res. 51, 92329255.
Nakato, M., Onogi, H., Himeno, Y., Tanaka, I. & Suzuki, T. 1985 Resistance increase due to surface roughness. In 15th Symposium on Naval Hydrodynamics, Hamburg, Germany. National Academy Press.
Nikuradse, J.1933 Strömungsgesetze in Rauhen Rohren. In VDI-Forschungsheft, vol. 361. (English translation – Laws of flow in rough pipes, NACA Technical Memorandum 1292 (1950)).
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 7 (53), N73.
Schlichting, H. 1936 Experimentelle Untersuchungen zum Rauhigkeitsproblem. In Ingeneur-Archiv, vol. 7, pp. 134 (English translation – Experimental investigation of the problem of surface roughness, NACA Technical Memorandum 823 (1937)).
Schultz, M. P. & Flack, K. A. 2007 The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381405.
Shockling, M. A., Allen, J. J. & Smits, A. J. 2006 Roughness effects in turbulent pipe flow. J. Fluid Mech. 564, 267285.
Thakkar, M.2017 Investigation of turbulent flow over irregular rough surfaces using direct numerical simulations. PhD thesis, University of Southampton, Faculty of Engineering and the Environment.
Thakkar, M., Busse, A. & Sandham, N. D. 2017 Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces. J. Turbul. 18 (2), 138169.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed