Skip to main content Accessibility help

Direct numerical simulation of turbulence over anisotropic porous media

  • Y. Kuwata (a1) and K. Suga (a1)


To investigate which component of the anisotropic permeability tensor of porous media influences turbulence over porous walls, direct numerical simulation of anisotropic porous-walled channel flows is performed by the D3Q27 multiple-relaxation-time lattice Boltzmann method. The presently considered anisotropic permeable walls have square pore arrays aligned with the Cartesian axes. Vertical, streamwise and spanwise pore arrays are systematically introduced to the walls to impose anisotropic permeability. Simulations are carried out at a friction Reynolds number of 111 and 230, which is based on the averaged friction velocity of the porous bottom and the smooth top walls. It is found that streamwise and spanwise permeabilities enhance turbulence whilst vertical permeability itself does not. In particular, the enhancement of turbulence is remarkable over porous walls with streamwise permeability. Over streamwise permeable walls, development of high- and low-speed streaks is prevented whilst large-scale intermittent patched patterns of ejection motions are induced. It is revealed by two-point correlation analysis that streamwise permeability allows the development of streamwise large-scale perturbations induced by Kelvin–Helmholtz instability. Spectral analysis reveals that this perturbation contributes to the enhancement of the Reynolds shear stress, leading to significant skin friction of the porous interface. Through the comparison between the two different Reynolds-number cases, it is found that, as the Reynolds number increases, the streamwise perturbation becomes larger and more organized. Consequently, owing to the enhancement of the large-scale perturbation, a significant Reynolds-number dependence of the skin friction of the porous interface can be observed over the streamwise permeable wall. It is also implied that the wavelength of the perturbation can be reasonably scaled by the outer-layer length scale.


Corresponding author

Email address for correspondence:


Hide All
Bespalko, D., Pollard, A. & Uddin, M. 2012 Analysis of the pressure fluctuations from an LBM simulation of turbulent channel flow. Comput. Fluids 54, 143146.
Beugre, D., Calvo, S., Dethier, G., Crine, M., Toye, D. & Marchot, P. 2010 Lattice Boltzmann 3D flow simulations on a metallic foam. J. Comput. Appl. Maths 234 (7), 21282134.
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.
Bushnell, D. M. 1990 Viscous Drag Reduction in Boundary Layers, vol. 123. AIAA.
Chandesris, M., D’Hueppe, A., Mathieu, B., Jamet, D. & Goyeau, B. 2013 Direct numerical simulation of turbulent heat transfer in a fluid-porous domain. Phys. Fluids 25 (12), 125110.
Chikatamarla, S. S., Frouzakis, C. E., Karlin, I. V., Tomboulides, A. G. & Boulouchos, K. B. 2010 Lattice Boltzmann method for direct numerical simulation of turbulent flows. J. Fluid Mech. 656, 298308.
Chukwudozie, C. & Tyagi, M. 2013 Pore scale inertial flow simulations in 3-D smooth and rough sphere packs using lattice Boltzmann method. AIChE J. 59, 48584870.
De Lemos, M. J. S. 2012 Turbulence in Porous Media: Modeling and Applications. Elsevier.
D’Humiéres, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L.-S. 2002 Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360, 437451.
Dimotakis, P. E. & Brown, G. L. 1976 The mixing layer at high Reynolds number: large-structure dynamics and entrainment. J. Fluid Mech. 78 (03), 535560.
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.
Franca, M. J., Ferreira, R. M. L & Lemmin, U. 2008 Parameterization of the logarithmic layer of double-averaged streamwise velocity profiles in gravel-bed river flows. Adv. Water Resour. 31 (6), 915925.
Ghisalberti, M. & Nepf, H. 2002 Mixing layers and coherent structures in vegetated aquatic flows. J. Geophys. Res. Oceans 107 (C2), 111.
Goldstein, D., Handler, R. & Sirovich, L. 1995 Direct numerical simulation of turbulent flow over a modelled riblet-covered surface. J. Fluid Mech. 302, 333376.
Hahn, S., Je, J. & Choi, H. 2002 Direct numerical simulation of turbulent channel flow with permeable walls. J. Fluid Mech. 450, 259285.
Hasert, M., Bernsdorf, J. & Roller, S. 2011 Lattice Boltzmann simulation of non-Darcy flow in porous media. Proc. Comput. Sci. 4, 10481057.
Hatiboglu, C. U. & Babadagli, T. 2008 Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Phys. Rev. E 77, 066311.
He, X. & Luo, L. S. 1997 Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88 (3–4), 927944.
Huang, C., Shi, B., He, N. & Chai, Z. 2015 Implementation of multi-GPU based lattice Boltzmann method for flow through porous media. Adv. Appl. Math. Mech. 112.
Hurther, D. & Lemmin, U. 2008 Improved turbulence profiling with field-adapted acoustic Doppler velocimeters using a bifrequency Doppler noise suppression method. J. Atmos. Ocean. Technol. 25 (3), 452463.
Jimenez, J., Uhlmann, M., Pinelli, A. & Kawahara, G. 2001 Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89117.
Jin, Y., Uth, M. F. & Herwig, H. 2015 Structure of a turbulent flow through plane channels with smooth and rough walls: an analysis based on high resolution DNS results. Comput. Fluids 107, 7788.
Kang, S. K. & Hassan, Y. A. 2013 The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows. J. Comput. Phys. 232 (1), 100117.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Kong, F. Y. & Schetz, J. A.1982 Turbulent boundary layer over porous surfaces with different surface geometries. AIAA Paper 82-0030.
Krafczyk, M., Kucher, K., Wang, Y. & Geier, M. 2015 DNS/LES studies of turbulent flows based on the cumulant lattice Boltzmann approach. In High Performance Computing in Science and Engineering ’14, pp. 519531. Springer.
Kuwata, Y. & Suga, K. 2015a Anomaly of the lattice Boltzmann methods in three-dimensional cylindrical flows. J. Comput. Phys. 280, 563569.
Kuwata, Y. & Suga, K. 2015b Large eddy simulations of pore-scale turbulent flows in porous media by the lattice Boltzmann method. Intl J. Heat Fluid Flow 55, 143157.
Kuwata, Y. & Suga, K. 2016a Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. J. Comput. Phys. 311, 348362.
Kuwata, Y. & Suga, K. 2016b Lattice Boltzmann direct numerical simulation of interface turbulence over porous and rough walls. Intl J. Heat Fluid Flow 61, 145157.
Kuwata, Y. & Suga, K. 2016c Transport mechanism of interface turbulence over porous and rough walls. Flow Turb. Combust. 123.
Lammers, P., Beronov, K. N., Volkert, R., Brenner, G. & Durst, F. 2006 Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow. Comput. Fluids 35 (10), 11371153.
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.
Li, X., Zhang, Y., Wang, X. & Ge, W. 2013 GPU-based numerical simulation of multi-phase flow in porous media using multiple-relaxation-time lattice Boltzmann method. Chem. Engng Sci. 102, 209219.
Manes, C., Poggi, D. & Ridolfi, L. 2011 Turbulent boundary layers over permeable walls: scaling and near-wall structure. J. Fluid Mech. 687, 141170.
Manes, C., Pokrajac, D., McEwan, I. & Nikora, V. 2009 Turbulence structure of open channel flows over permeable and impermeable beds: a comparative study. Phys. Fluids 21 (12), 125109.
Mignot, E., Hurther, D. & Barthelemy, E. 2009 On the structure of shear stress and turbulent kinetic energy flux across the roughness layer of a gravel-bed channel flow. J. Fluid Mech. 638, 423452.
Nield, D. A. & Bejan, A. 2006 Convection in Porous Media, 3rd edn. Springer.
Nikora, V., Goring, D., McEwan, I. & Griffiths, G. 2001 Spatially averaged open-channel flow over rough bed. J. Hydraul. Engng 127 (2), 123133.
Orlandi, P., Leonardi, S. & Antonia, R. A. 2006 Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J. Fluid Mech. 561, 279305.
Parmigiani, A., Huber, C., Bachmann, O. & Chopard, B. 2011 Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 4076.
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37 (02), 383413.
Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G. 2004 The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111 (3), 565587.
Pokrajac, D. & Manes, C. 2009 Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Trans. Porous Med. 78, 367383.
Raupach, M. R., Finnigan, J. J. & Brunei, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78 (3–4), 351382.
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6 (2), 903923.
Samanta, A., Vinuesa, R., Lashgari, I., Schlatter, P. & Brandt, L. 2015 Enhanced secondary motion of the turbulent flow through a porous square duct. J. Fluid Mech. 784, 681693.
Suga, K., Kuwata, Y., Takashima, K. & Chikasue, R. 2015 A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows. Comput. Maths Applics. 69, 518529.
Suga, K., Matsumura, Y., Ashitaka, Y., Tominaga, S. & Kaneda, M. 2010 Effects of wall permeability on turbulence. Intl J. Heat Fluid Flow 31, 974984.
Suga, K., Mori, M. & Kaneda, M. 2011 Vortex structure of turbulence over permeable walls. Intl J. Heat Fluid Flow 32, 586595.
Suga, K. & Nishio, Y. 2009 Three dimensional microscopic flow simulation across the interface of a porous wall and clear fluid by the lattice Boltzmann method. Open Transp. Phenom. J. 1, 3544.
Suga, K., Tanaka, T., Nishio, Y. & Murata, M. 2009 A boundary reconstruction scheme for lattice Boltzmann flow simulation in porous media. Prog. Comput. Fluid Dyn. 9, 201207.
Tóth, G. & Jánosi, I. M. 2015 Vorticity generation by rough walls in 2D decaying turbulence. J. Stat. Phys. 161 (6), 15081518.
Whitaker, S. 1986 Flow in porous media I: a theoretical derivation of Darcy’s law. Trans. Porous Med. 1, 325.
Whitaker, S. 1996 The Forchheimer equation: a theoretical development. Trans. Porous Med. 25, 2761.
White, A. T. & Chong, C. K. 2011 Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230 (16), 63676378.
Zagni, A. F. E. & Smith, K. V. H 1976 Channel flow over permeable beds of graded spheres. J. Hydraul. Div. ASCE 102 (2), 207222.
Zippe, H. J. & Graf, W. H. 1983 Turbulent boundary-layer flow over permeable and non-permeable rough surfaces. J. Hydraul Res. 21, 5165.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed