Skip to main content Accessibility help
×
Home

Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation

  • SERGIO PIROZZOLI (a1), MATTEO BERNARDINI (a1) and FRANCESCO GRASSO (a1)

Abstract

The interaction of a normal shock wave with a turbulent boundary layer developing over a flat plate at free-stream Mach number M = 1.3 and Reynolds number Reθ ≈ 1200 (based on the momentum thickness of the upstream boundary layer) is analysed by means of direct numerical simulation of the compressible Navier–Stokes equations. The computational methodology is based on a hybrid linear/weighted essentially non-oscillatory conservative finite-difference approach, whereby the switch is controlled by the local regularity of the solution, so as to minimize numerical dissipation. As found in experiments, the mean flow pattern consists of an upstream fan of compression waves associated with the thickening of the boundary layer, and the supersonic region is terminated by a nearly normal shock, with substantial bending of the interacting shock. At the selected conditions the flow does not exhibit separation in the mean. However, the interaction region is characterized by ‘intermittent transitory detachment’ with scattered spots of instantaneous flow reversal throughout the interaction zone, and by the formation of a turbulent mixing layer, with associated unsteady release of vortical structures. As found in supersonic impinging shock interactions, we observe a different amplification of the longitudinal Reynolds stress component with respect to the others. Indeed, the effect of the adverse pressure gradient is to reduce the mean shear, with subsequent suppression of the near-wall streaks, and isotropization of turbulence. The recovery of the boundary layer past the interaction zone follows a quasi-equilibrium process, characterized by a self-similar distribution of the mean flow properties.

Copyright

Corresponding author

Email address for correspondence: sergio.pirozzoli@uniroma1.it

References

Hide All
Adams, N. A. 2000 Direct simulation of the turbulent boundary layer along a compressible ramp at M = 3 and Re θ = 1685. J. Fluid Mech. 420, 4783.
Atkin, C. J. & Squire, L. C. 1992 A study on the interaction of a normal shock wave with a turbulent boundary layer at Mach numbers between 1.30 and 1.55. Eur. J. Mech. B/Fluids 11, 93118.
Barakos, G. & Drikakis, D. 2000 Investigation of nonlinear eddy-viscosity turbulence models in shock/boundary layer interaction. AIAA J. 38, 461469.
Batten, P., Craft, T. J., Leschziner, M. A. & Loyau, H. 1999 Reynolds-stress-transport modeling for compressible aerodynamics applications. AIAA J. 37, 785797.
Bruce, P. J. K. 2008 Transonic shock/boundary layer interactions subject to downstream pressure perturbations. PhD thesis, Magdalene College, Department of Engineering, University of Cambridge.
Bruce, P. J. K. & Babinsky, H. 2008 Unsteady shock wave dynamics. J. Fluid Mech. 603, 463473.
Bruce, P. J. K. & Babinsky, H. 2009 Behaviour of unsteady transonic shock/boundary layer interactions with three-dimensional effects. AIAA Paper 2009-1590.
Bull, M. K. 1967 Wall pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28, 719754.
Castillo, L. & George, W. K. 2001 Similarity analysis for turbulent boundary layer with pressure gradient: outer flow. AIAA J. 39, 4147.
Clauser, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aerosp. Sci. 21, 91108.
Davidson, L. 1995 Reynolds stress transport modelling of shock-induced separated flow. Comput. Fluids 24, 253268.
Délery, J. 1983 Experimental investigation of turbulence properties in transonic shock/boundary layer interactions. AIAA J. 21, 180185.
Délery, J. & Marvin, J. G. 1986 Shock-wave boundary layer interactions. AGARDograph 280.
Dolling, D. S. 2001 Fifty years of shock-wave/boundary layer interaction research: what next? AIAA J. 39, 15171531.
East, L. F. 1976 The application of a laser anemometer to the investigation of shock wave boundary layer interactions. AGARD-CPP 193.
Erm, L. P. & Joubert, J. 1991 Low Reynolds number turbulent boundary layers. J. Fluid Mech. 230, 144.
Fernholz, H. H. & Finley, P. J. 1980 A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers. AGARDograph 253.
Garnier, E., Sagaut, P. & Deville, M. 2002 Large-eddy simulation of shock/boundary-layer interaction. AIAA J. 40 (10), 19351944.
Gerolymos, G. A. & Vallet, I. 1997 Near-wall Reynolds-stress three-dimensional transonic flow computation. AIAA J. 35, 228236.
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.
Hopkins, E. J. & Inouye, M. 1971 An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers. AIAA J. 9, 9931003.
Jiang, G. S. & Shu, C. W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202.
Jiménez, J. & Wray, A. A. 1998 On the characteristics of vortex filaments in isotropic turbulence. J. Fluid Mech. 373, 255285.
Knight, D., Yana, H., Panaras, A. G. & Zheltovodov, A. 2003 Advances in CFD prediction of shock wave turbulent boundary layer interactions. Prog. Aerosp. Sci. 39, 121184.
Lam, K. & Banerjee, S. 1992 On the condition of streak formation in a bounded turbulent flow. Phys. Fluids 4 (2), 306320.
Leschziner, M. A., Batten, P. & Loyau, H. 2000 Modelling shock-affected near-wall flows with anisotropy-resolving turbulence closures. Intl J. Heat Fluid Flow 21, 239251.
Leschziner, M. A. & Drikakis, D. 2002 Turbulence modelling and turbulent-flow computation in aeronautics. Aeronaut. J. 106, 349384.
Liu, X. & Squire, L. C. 1988 An investigation of shock/boundary-layer interactions on curved surfaces at transonic speeds. J. Fluid Mech. 187, 467486.
Lumley, J. L. 1978 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.
Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Fluid Mech. 140, 233258.
Morkovin, M. V. 1961 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence (ed. Favre, A.), p. 367. CNRS.
Na, Y. & Moin, P. 1998 a Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379404.
Na, Y. & Moin, P. 1998 b The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 377, 347373.
Pirozzoli, S. 2002 Conservative hybrid compact-WENO schemes for shock–turbulence interaction. J. Comput. Phys. 178, 81117.
Pirozzoli, S., Bernardini, M. & Grasso, F. 2007 Aeroacoustics of transonic shock–boundary layer interactions. AIAA Paper 2007-3416.
Pirozzoli, S., Bernardini, M. & Grasso, F. 2008 Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, 205231.
Pirozzoli, S. & Grasso, F. 2004 Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids 16 (12), 43864407.
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M = 2.25. Phys. Fluids 18, 065113.
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16 (3), 530545.
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104129.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Rogers, M. & Moser, R. 1993 Direct numerical simulation of a self-similar turbulent mixing layer. Phys. Fluids A 6, 903923.
Sagaut, P., Garnier, E., Tromeur, E., Larcheveque, L. & Labourasse, E. 2004 Turbulent inflow conditions for large eddy simulation of compressible wall-bounded flows. AIAA J. 42, 469477.
Sandham, N. D., Yao, Y. F. & Lawal, A. A. 2003 Large-eddy simulation of transonic flow over a bump. Intl J. Heat Fluid Flow 24, 584595.
Seddon, J. 1960 The flow produced by interaction of a turbulent boundary layer with a normal shock wave of strength sufficient to cause separation. Tech. Rep. 3502. ARC R & M.
Simpson, R. L. 1989 Turbulent boundary layer separation. Annu. Rev. Fluid Mech. 21, 205234.
Smits, A. J. & Dussauge, J. P. 2006 Turbulent Shear Layers in Supersonic Flow. American Institute of Physics.
Spalart, P., Strelets, M. & Travin, A. 2006 Direct numerical simulation of large-eddy-break-up devices in a boundary layer. Intl J. Heat Fluid Flow 27, 902910.
Spalart, P. R. 1988 Direct numerical simulation of a turbulent boundary layer up to Re θ = 1410. J. Fluid Mech. 187, 6198.
Stolz, S. & Adams, N. A. 2003 Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids 15, 23982412.
Touber, E. & Sandham, N. D. 2009 Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23, 79107.
White, F. M. 1974 Viscous Fluid Flow. McGraw-Hill.
Wu, M. & Martin, M. P. 2007 Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45, 879889.
Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.
Xu, S. & Martin, M. P. 2004 Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids 16, 26232639.
Zagarola, M. & Smits, A. J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO
Type Description Title
VIDEO
Movie

Pirozzoli et al. supplementary movie
Transonic shock wave/boundary layer interaction. Animation of the pressure field in streamwise, wall-normal plane in the proximity of the interaction zone. Pressure is normalized by its free-stream value, and 32 contour levels are shown, from 0.77 to 1.53.

 Video (10.5 MB)
10.5 MB

Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation

  • SERGIO PIROZZOLI (a1), MATTEO BERNARDINI (a1) and FRANCESCO GRASSO (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.