Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-22T02:30:24.210Z Has data issue: false hasContentIssue false

Direct numerical simulation of particle-laden flow in an open channel at $Re_{\tau }=5186$

Published online by Cambridge University Press:  09 February 2023

Wei Gao
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
Ravi Samtaney
Affiliation:
Mechanical Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
David H. Richter*
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
*
Email address for correspondence: david.richter.26@nd.edu

Abstract

We perform two-way coupled direct numerical simulation of particle-laden flow in an open channel at a friction Reynolds number ($Re_{\tau }$) of 5186, which exhibits many characteristics of high-Reynolds-number wall-bounded turbulence, such as the distinct separation of scales in the inner and outer layers. Three representative cases, an unladen case and low- and high-Stokes-number particle-laden cases, are performed to investigate the turbulent modification by particles. To this end, we compare several statistical quantities to understand the particle effect on momentum exchange and interphasial energy transfer. The modulation of large-scale motions (LSMs) and very-large-scale motions (VLSMs) are analysed using spectral information, and we find that the LSMs and VLSMs are generally weakened in the inner and outer layers, which is qualitatively different from similar simulations at lower Reynolds numbers ($Re_{\tau } \approx 500$). The spatial structures are investigated with correlation analysis, and inclined VLSMs are observed in the near-wall region, with decreased inclination angles by particles. The particles tend to widen and shorten the spanwise and streamwise extent of coherent structures, respectively. Furthermore, we find that the vorticity vector displays a preferential alignment with the eigenvector corresponding to the intermediate eigenvalue of the strain-rate tensor, independent of the particle Stokes number.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R.J. & Marusic, I. 2012 Coherent structures in flow over hydraulic engineering surfaces. J. Hydraul. Res. 50 (5), 451464.CrossRefGoogle Scholar
Ahmadi, F., Sanders, R.S. & Ghaemi, S. 2021 Spatial distribution of particles in turbulent channel flow of dilute suspensions. Intl J. Multiphase Flow 135, 103538.CrossRefGoogle Scholar
Arcen, B. & Tanière, A. 2009 Simulation of a particle-laden turbulent channel flow using an improved stochastic Lagrangian model. Phys. Fluids 21, 043303.CrossRefGoogle Scholar
Arcen, B., Tanière, A. & Oesterlé, B. 2006 On the influence of near-wall forces in particle-laden channel flows. Intl J. Multiphase Flow 32 (12), 13261339.CrossRefGoogle Scholar
Ashurst, W.T., Kerstein, A.R., Kerr, R.M. & Gibson, C.H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8), 23432353.CrossRefGoogle Scholar
Balachandar, S. 2009 A scaling analysis for point-particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35 (9), 801810.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Bernardini, M. 2014 Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2013 The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows. Intl J. Multiphase Flow 51, 5564.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54, 159189.CrossRefGoogle Scholar
Calmet, I. & Magnaudet, J. 2003 Statistical structure of high-Reynolds-number turbulence close to the free surface of an open-channel flow. J. Fluid Mech. 474, 355378.CrossRefGoogle Scholar
Capecelatro, J. & Desjardins, O. 2013 An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.CrossRefGoogle Scholar
Capecelatro, J., Desjardins, O. & Fox, R.O. 2018 On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech. 845, 499519.CrossRefGoogle Scholar
Chung, D. & Pullin, D.I. 2009 Large-eddy simulation and wall modelling of turbulent channel flow. J. Fluid Mech. 631, 281309.CrossRefGoogle Scholar
Costa, P., Brandt, L. & Picano, F. 2020 Interface-resolved simulations of small inertial particles in turbulent channel flow. J. Fluid Mech. 883, A54.CrossRefGoogle Scholar
Costa, P., Brandt, L. & Picano, F. 2021 Near-wall turbulence modulation by small inertial particles. J. Fluid Mech. 922, A9.CrossRefGoogle Scholar
Crowe, C.T., Troutt, T.R. & Chung, J.N. 1996 Numerical models for two-phase turbulent flows. Annu. Rev. Fluid Mech. 28, 1143.CrossRefGoogle Scholar
Del Álamo, J.C., Jiménez, J., Zandonade, P. & Moser, R.D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
Dritselis, C.D. & Vlachos, N.S. 2008 Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20, 055103.CrossRefGoogle Scholar
Elghobashi, S. & Truesdell, G.C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I. Turbulence modification. Phys. Fluids A 5, 1790.CrossRefGoogle Scholar
Elsinga, G.E. & Marusic, I. 2010 Universal aspects of small-scale motions in turbulence. J. Fluid Mech. 662, 514539.CrossRefGoogle Scholar
Fede, P. & Simonin, O. 2006 Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18, 045103.CrossRefGoogle Scholar
Fessler, J.R., Kulick, J.D. & Eaton, J.K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6 (11), 37423749.CrossRefGoogle Scholar
Fornari, W., Formenti, A., Picano, F. & Brandt, L. 2016 The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions. Phys. Fluids 28, 033301.CrossRefGoogle Scholar
Gao, W., Cheng, W. & Samtaney, R. 2020 Large-eddy simulations of turbulent flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 900, A43.CrossRefGoogle Scholar
Gao, W., Zhang, W., Cheng, W. & Samtaney, R. 2019 Wall-modelled large-eddy simulation of turbulent flow past airfoils. J. Fluid Mech. 873, 174210.CrossRefGoogle Scholar
Gore, R.A. & Crowe, C.T. 1989 Effect of particle size on modulating turbulent intensity. Intl J. Multiphase Flow 15 (2), 279285.CrossRefGoogle Scholar
Gualtieri, P., Picano, F. & Casciola, C.M. 2009 Anisotropic clustering of inertial particles in homogeneous shear flow. J. Fluid Mech. 629, 2539.CrossRefGoogle Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C.M. 2013 Clustering and turbulence modulation in particle-laden shear flows. J. Fluid Mech. 715, 134162.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Inoue, M. & Pullin, D.I. 2011 Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to $Re_\theta = O ( 10^{12} )$. J. Fluid Mech. 686, 507533.CrossRefGoogle Scholar
Jie, Y., Andersson, H.I. & Zhao, L. 2021 Effects of the quiescent core in turbulent channel flow on transport and clustering of inertial particles. Intl J. Multiphase Flow 140, 103627.CrossRefGoogle Scholar
Jie, Y., Cui, Z., Xu, C. & Zhao, L. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J. Fluid Mech. 935, A18.CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Kuerten, J.G.M. 2016 Point-particle DNS and LES of particle-laden turbulent flow - a state-of-the-art review. Flow Turbul. Combust. 97, 689713.CrossRefGoogle Scholar
Lee, J. & Lee, C. 2015 Modification of particle-laden near-wall turbulence: Effect of Stokes number. Phys. Fluids 27, 023303.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_\tau \approx 5200$. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech. 860, 886938.CrossRefGoogle Scholar
Li, Y., McLaughlin, J.B., Kontomaris, K. & Portela, L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13 (10), 29572967.CrossRefGoogle Scholar
Liu, H., Feng, Y. & Zheng, X. 2022 Experimental investigation of the effects of particle near-wall motions on turbulence statistics in particle-laden flows. J. Fluid Mech. 943, A8.CrossRefGoogle Scholar
Liu, H., He, X. & Zheng, X. 2021 An investigation of particles effects on wall-normal velocity fluctuations in sand-laden atmospheric surface layer flows. Phys. Fluids 33, 103309.CrossRefGoogle Scholar
Lozano-Durán, A., Holzner, M. & Jiménez, J. 2016 Multiscale analysis of the topological invariants in the logarithmic region of turbulent channels at a friction Reynolds number of 932. J. Fluid Mech. 803, 356394.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to $Re_{\tau }= 4200$. Phys. Fluids 26, 011702.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J. & Sreenivasan, K.R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103.CrossRefGoogle Scholar
McKeon, B.J. & Sreenivasan, K.R. 2007 Introduction: scaling and structure in high Reynolds number wall-bounded flows. Phil. Trans. R. Soc. A 365, 635646.CrossRefGoogle ScholarPubMed
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 132.CrossRefGoogle Scholar
Misra, A. & Pullin, D.I. 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9 (8), 24432454.CrossRefGoogle Scholar
Monty, J.P., Stewart, J.A., Williams, R.C. & Chong, M.S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.CrossRefGoogle Scholar
Motoori, Y., Wong, C. & Goto, S. 2022 Role of the hierarchy of coherent structures in the transport of heavy small particles in turbulent channel flow. J. Fluid Mech. 942, A3.CrossRefGoogle Scholar
Mugundhan, V., Pugazenthi, R.S., Speirs, N.B., Samtaney, R. & Thoroddsen, S.T. 2020 The alignment of vortical structures in turbulent flow through a contraction. J. Fluid Mech. 884, A5.CrossRefGoogle Scholar
Mullin, J.A. & Dahm, W.J.A. 2006 Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results. Phys. Fluids 18, 035102.CrossRefGoogle Scholar
Muste, M. & Patel, V.C. 1997 Velocity profiles for particles and liquid in open-channel flow with suspended sediment. J. Hydraul. Eng. 123 (9), 742751.CrossRefGoogle Scholar
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8 (10), 27332755.CrossRefGoogle Scholar
Poelma, C. & Ooms, G. 2006 Particle–turbulence interaction in a homogeneous, isotropic turbulent suspension. Appl. Mech. Rev. 59 (2), 7890.CrossRefGoogle Scholar
Richter, D.H. 2015 Turbulence modification by inertial particles and its influence on the spectral energy budget in planar Couette flow. Phys. Fluids 27, 063304.CrossRefGoogle Scholar
Richter, D.H. & Sullivan, P.P. 2014 Modification of near-wall coherent structures by inertial particles. Phys. Fluids 26, 103304.CrossRefGoogle Scholar
Righetti, M. & Romano, G.P. 2004 Particle–fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505, 93121.CrossRefGoogle Scholar
Rouson, D.W.I. & Eaton, J.K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.CrossRefGoogle Scholar
Schiller, L. 1933 Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Verein. Deutsch. Ing. 77, 318321.Google Scholar
Simonin, O., Deutsch, E. & Minier, J.P. 1993 Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows. Appl. Sci. Res. 51 (1), 275283.CrossRefGoogle Scholar
Smits, A.J, McKeon, B.J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.CrossRefGoogle Scholar
Squires, K.D. & Eaton, J.K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2, 1191.CrossRefGoogle Scholar
Tanaka, T. & Eaton, J.K. 2008 Classification of turbulence modification by dispersed spheres using a novel dimensionless number. Phys. Rev. Lett. 101, 114502.CrossRefGoogle ScholarPubMed
Tenneti, S. & Subramaniam, S. 2014 Particle-resolved direct numerical simulation for gas–solid flow model development. Annu. Rev. Fluid Mech. 46, 199230.CrossRefGoogle Scholar
Vreman, A.W. 2015 Turbulence attenuation in particle-laden flow in smooth and rough channels. J. Fluid Mech. 773, 103136.CrossRefGoogle Scholar
Wang, G., Fong, K.O., Coletti, F., Capecelatro, J. & Richter, D.H. 2019 Inertial particle velocity and distribution in vertical turbulent channel flow: a numerical and experimental comparison. Intl J. Multiphase Flow 120, 103105.CrossRefGoogle Scholar
Wang, G., Gu, H. & Zheng, X. 2020 a Large scale structures of turbulent flows in the atmospheric surface layer with and without sand. Phys. Fluids 32, 106604.CrossRefGoogle Scholar
Wang, G., Park, H.J. & Richter, D.H. 2020 b Effect of computational domain size on inertial particle one-point statistics in open channel flow. Intl J. Multiphase Flow 125, 103195.CrossRefGoogle Scholar
Wang, G. & Richter, D.H. 2019 Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow. J. Fluid Mech. 868, 538559.CrossRefGoogle Scholar
Wang, G. & Richter, D.H. 2020 Multiscale interaction of inertial particles with turbulent motions in open channel flow. Phys. Rev. Fluids 5, 044307.CrossRefGoogle Scholar
Yamamoto, Y. & Tsuji, Y. 2018 Numerical evidence of logarithmic regions in channel flow at $Re_{\tau }= 8000$. Phys. Rev. Fluids 3, 012602.CrossRefGoogle Scholar
Young, J. & Leeming, A. 1997 A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340, 129159.CrossRefGoogle Scholar
Yu, Z., Lin, Z., Shao, X. & Wang, L. 2017 Effects of particle–fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Phys. Rev. E 96, 033102.CrossRefGoogle ScholarPubMed
Zhang, Y., Hu, R. & Zheng, X. 2018 Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study. Phys. Fluids 30, 046601.CrossRefGoogle Scholar
Zhao, L., Andersson, H.I. & Gillissen, J.J.J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22, 081702.CrossRefGoogle Scholar
Zhao, L., Andersson, H.I. & Gillissen, J.J.J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.CrossRefGoogle Scholar
Zhao, L., Marchioli, C. & Andersson, H.I. 2012 Stokes number effects on particle slip velocity in wall-bounded turbulence and implications for dispersion models. Phys. Fluids 24, 021705.CrossRefGoogle Scholar
Zheng, X., Feng, S. & Wang, P. 2021 a Modulation of turbulence by saltating particles on erodible bed surface. J. Fluid Mech. 918, A16.CrossRefGoogle Scholar
Zheng, X., Wang, G. & Zhu, W. 2021 b Experimental study on the effects of particle–wall interactions on VLSM in sand-laden flows. J. Fluid Mech. 914, A35.CrossRefGoogle Scholar
Zhu, C., Yu, Z. & Shao, X. 2018 Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows. Phys. Fluids 30, 115103.CrossRefGoogle Scholar
Zhu, H., Pan, C., Wang, G., Liang, Y., Ji, X. & Wang, J. 2021 Attached eddy-like particle clustering in a turbulent boundary layer under net sedimentation conditions. J. Fluid Mech. 920, A53.CrossRefGoogle Scholar