Skip to main content Accessibility help
×
Home

Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows

  • M. Baum (a1), T. J. Poinsot (a2), D. C. Haworth (a3) and N. Darabiha (a1)

Abstract

Premixed H2/O2/N2 flames propagating in two-dimensional turbulence have been studied using direct numerical simulations (DNS: simulations in which all fluid and thermochemical scales are fully resolved). Simulations include realistic chemical kinetics and molecular transport over a range of equivalence ratios Φ (Φ = 0.35, 0.5, 0.7, 1.0, 1.3). The validity of the flamelet assumption for premixed turbulent flames is checked by comparing DNS data and results obtained for steady strained premixed flames with the same chemistry (flamelet ‘library’). This comparison shows that flamelet libraries overestimate the influence of stretch on flame structure. Results are also compared with earlier zero-chemistry (flame sheet) and one-step chemistry simulations. Consistent with the simpler models, the turbulent flame with realistic chemistry aligns preferentially with extensive strain rates in the tangent plane and flame curvature probability density functions are close to symmetric with near-zero means. For very lean flames it is also found that the local flame structure correlates with curvature as predicted by DNS based on simple chemistry. However, for richer flames, by contrast to simple-chemistry results with non-unity Lewis numbers (ratio of thermal to species diffusivity), local flame structure does not correlate with curvature but rather with tangential strain rate. Turbulent straining results in substantial thinning of the flame relative to the steady unstrained laminar case. Heat-release and H2O2 contours remain thin and connected (‘flamelet-like’) while species including H-atom and OH are more diffuse. Peak OH concentration occurs well behind the peak heat-release zone when the flame temperature is high (of the order of 2800 K). For cooler and leaner flames (about 1600 K and for an equivalence ratio below 0.5) the OH radical is concentrated near the reaction zone and the maximum OH level provides an estimate of the local flamelet speed as assumed by Becker et al. (1990).

Copyright

References

Hide All
Ashurst, W. T. 1990 Geometry of premixed flames in three-dimensional turbulence. In Proc. 1990 Summer Program, pp. 245253. Center for Turbulence Research, Stanford University and NASA Ames
Ashurst, W. T. & Barr, P. K. 1983 Stochastic calculation of laminar wrinkled flame propagation via vortex dynamics. Combust. Sci. Technol. 34, 227256.
Ashurst, W. T., Peters, N. & Smooke, M. D. 1987 Numerical simulation of turbulent flame structure with non-unity Lewis number. Combust. Sci. Technol. 53, 339375.
Ashurst, W. T., Shivashinsky, G. I. & Yakhot, V. 1988 Flame-front propagation in non-steady hydrodynamic fields. Combust. Sci. Technol. 62, 273284.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Becker, H., Monkhouse, P. B., Wolfrum, J., Cant, R. S., Bray, K. N. C., Maly, R., Pfister, W., Stahl, G. & Warnatz, J. 1990 Investigation of extinction in unsteady flames in turbulent combustion by 2D-LIF of OH radicals and flamelet analysis. In 23rd Symp. (Intl) on Combustion, pp. 817823. The Combustion Institute, Pittsburgh.
Blint, R. J. 1988 Flammability limits for exhaust gas diluted flames. In 22nd Symp. (Intl) on Combustion, pp. 15471554. The Combustion Institute, Pittsburgh.
Blint, R. J. 1991 Stretch in premixed laminar flames under IC engine conditions. Combust. Sci. Technol. 75, 115128.
Boudier, P., Henriot, S., Poinsot, T. & Baritaud, T. 1992 A model for turbulent flame ignition and propagation in spark ignition engines. In 24th Symp. (Intl) on Combustion, pp. 503510. The Combustion Institute, Pittsburgh.
Bray, K. N. C. & Cant, R. S. 1991 Some applications of Kolmogorov's turbulence research in the field of combustion. Proc. R. Soc. Lond. A, 434, 217240.
Candel, S. M. & Poinsot, T. J. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70, 115.
Cant, R. S., Rutland, C. J. & Trouvé, A. 1990 Statistics for laminar flamelet modeling. In Proc. 1990 Summer Program, pp. 271279. Center for Turbulence Research, Stanford University & NASA Ames.
Chelliah, H. K. & Williams, F. A. 1987 Asymptotic analysis of two-reactant flames with variable properties and Stefan–Maxwell transport. Combust. Sci. Technol. 51, 129144.
Clavin, P. & Williams, F. 1982 Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 116, 251282.
Darabiha, N. & Candel, S. 1992 The influence of the temperature on extinction and ignition limits of strained hydrogen-air diffusion flames. Combust. Sci. Technol. 86, 6785.
Darabiha, N., Giovangigli, V., Candel, S. & Smooke, M. D. 1989 Vectorized computation of complex chemistry flames. In Proc. Intl Symp. on High Performance Computing, Montpellier, France (ed. J. Delhaye & E. Gelenbe). Elsevier.
Dixon-Lewis, G. & Missaghi 1988 Structure and extinction limits of counterflow diffusion flames of hydrogen nitrogen mixture in air. In 22nd Symp. (Intl) on Combustion, pp. 14611470. The Combustion Institute, Pittsburgh.
Dixon-Lewis, G. & Williams, D. 1979 The oxidation of hydrogen and carbon monoxide. Phil. Trans. R. Soc. Lond. A 292, 4599.
Drake, M. C. & Blint, R. J. 1988 Structure of laminar opposed-flow diffusion flames with CO/H2/N2 fuel. Combust. Sci. Technol. 61, 187224.
El Tahry, S. H. 1990 A turbulence combustion model for premixed charge engines. Combust. flame 79, 122140.
El Tahry, S. H., Rutland, S. H. & Ferziger, J. H. 1991 Structure and propagation speeds of turbulent premixed flames – a numerical study. Combust. Flame 83, 155173.
Garcia-Ybarra, P., Nicoli, C. & Calvin, P. 1984 Soret and dilution effects on premixed flames. Combust. Sci. Technol. 42, 87109.
Ghoniem, A. F. & Krishnan, A. 1988 Origin and manifestation of flow combustion interactions in a premixed shear layer. In 22nd Symp. (Intl) on Combustion, pp. 665657. The Combustion Institute, Pittsburgh.
Giovangigli, V. & Smooke, M. 1987a Calculation of extinction limits for premixed laminar flames in a stagnation point flow. J. Comput. Phys. 68, 327345.
Giovangigli, V. & Smooke, M. 1987b Extinction of strained premixed laminar flames with complex chemistry. Combust. Sci. Technol. 53, 2349.
Giovangigli, V. & Smooke, M. 1988 Adaptive continuation algorithms with applications to combustion problems. Appl. Numer. Math. 5, 305.
Girimaji, S. S. & Pope, S. B. 1992 Propagating surfaces in isotropic turbulence. J. Fluid Mech. 234, 247277.
Haworth, D. C. & Poinsot, T. J. 1992 Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405436.
Herring, J. R., Orszag, S. A., Kraichnan, R. H. & Fox, D. G. 1974 Decay of two-dimensional homogeneous turbulence. J. Fluid Mech. 66, 417444.
Hinze, J. O. 1975 Turbulence, 2nd edn. McGraw-Hill.
Hurle, I., Price, R., Sugden, T. & Thomas, A. 1968 Sound emission from open turbulent premixed flames. Proc. R. Soc. Lond. A 303, 409427.
Joulin, G. & Mitani, T. 1981 Linear stability analysis of two-reactant flames. Combust. Flame 40, 235246.
Kee, R., Miller, J., Evans, G. & Dixon-Lewis, G. 1988 A computational model of the structure and extinction of strained opposed flow, premixed methane air flames. In 22nd Symp. (Intl) on Combustion, pp. 14791494. The Combustion Institute.
Kee, R. J., Miller, J. A. & Jefferson, T. H. 1980 Chemkin: a general-purpose, problem-independent, transportable, fortran chemical-kinetics code package. Sandia Tech. Rep. SAND80–8003.
Kee, R. J., Warnatz, J. & Miller, J. A. 1983 A fortran computer code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients. Sandia Tech. Rep. SAND83–8209.
Kerstein, A. R., Ashurst, W. T. & Williams, F. A. 1988 Field equations for interface propagation in an unsteady homogeneous flowfield. Phys. Rev. A 37, 27282731.
Kwon, S., Tseng, L.-K. & Faeth, G. 1992 Laminar burning velocities and transition to unstable flames in H2/O2/N2 and C3H8/O2/N2 mixtures. Combust. Flame 90, 230246.
Lee, T.-W., Lee, J., Nye, D. & Santavicca, D. A. 1993 Local response and surface properties of premixed flames during interactions with kármán vortex streets. Combust. Flame 94, 146160.
Lee, T.-W., North, G. L. & Santavicca, D. A. 1992 Curvature and orientation statistics of turbulent premixed flame fronts. Combust. Sci. Technol. 84, 121132.
Lele, S. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.
Lesieur, M. 1987 Turbulence in Fluids. Martinus Nijhoff.
Mantzaras, J., Felton, P. G. & Bracco, F. V. 1988 Three-dimensional visualization of premixed-charge engine flames. SAE. Tech. Rep. 881635.
Meneveau, C. & Poinsot, T. 1990 Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86, 311332.
Miller, J. A., Mitchell, R. E., Smooke, M. D. & Lee, R. J. 1982 Toward a comprehensive chemical kinetic mechanism for the oxidation of acetylene: comparison of model predictions with results from flame and shock tube experiments. In 19th Symp. (Intl) on Combustion, pp. 181196. The Combustion Institute, Pittsburgh.
Montgomery, C. J., Kosaly, G. & Riley, J. 1993 Direct numerical simulation of turbulent reacting flow using a reduced hydrogen–oxygen mechanism. Combust. Flame 94, 247260.
Oran, E. S. & Boris, J. P. 1987 Numerical Simulation of Reactive Flow, Elsevier.
Poinsot, T. 1991 Flame ignition in a premixed turbulent flow. In Center for Turbulence Research Annual Research Briefs, pp. 122, Stanford University. Center for Turbulence Research & NASA Ames.
Poinsot, T., Echekki, T. & Mungal, M. G. 1992 A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81, 4555.
Poinsot, T. J., Haworth, D. C. & Bruneaux, G. 1993 Direct simulation and modelling of flame-wall interaction for turbulent premixed combustion. Combust. Flame 94, 118132.
Poinsot, T. & Lele, S. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104129.
Poinsot, T., Trouvé, A., Veynante, D., Candel, S. & Esposito, E. 1987 Vortex driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265292.
Poinsot, T., Veynante, D. & Candel, S. 1990 Diagrams of premixed turbulent combustion based on direct simulation. In 23rd Symp. (Intl) on Combustion, pp. 613619. The Combustion Institute, Pittsburgh.
Poinsot, T., Veynante, D. & Candel, S. 1991 Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561606.
Pope, S. B. 1988 Evolution of surfaces in turbulence. Intl J. Engng. Sci. 26, 445469.
Pope, S. B. 1991 Numerical issues in p.d.f. methods. In Fourth Intl Conf. on Numerical Combustion, St. Petersburg, FL, p. 165. SIAM.
Rutland, C. J., Ferziger, J. H. & El Tahry, S. H. 1990 Full numerical simulation and modeling of turbulent premixed flames. In 23rd Symp. (Intl) on Combustion, pp. 621627. The Combustion Institute, Pittsburgh.
Rutland, C. & Trouvé, A. 1990 Premixed flame simulations for nonunity lewis numbers. In Proc. 1990 Summer Program, pp. 299309, Stanford University. Center for Turbulence Research & NASA Ames.
Rutland, C. & Trouvé, A. 1993 Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame 94, 4157.
Searby, G. & Quinard, J. 1990 Direct and indirect measurements of markstein numbers of premixed flames. Combust. Flame 82, 289311.
Smooke, M. 1982 Solution of burner stabilized premixed laminar flames by boundary value method. J. Comput. Phys. 48, 72105.
Smooke, M. D., Lin, P., Lam, J. & Long, M. B. 1990 Computational and experimental study of a laminar axisymmetric methane–air diffusion flame. In 23rd Symp. (Intl) on Combustion, pp. 575582. The Combustion Institute, Pittsburgh.
Trouvé, A. & Poinsot, T. 1994 The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 131.
Warnatz, J. 1981 Concentration-, pressure-, and temperature-dependence of the flame velocity in hydrogen–oxygen–nitrogen mixtures. Combust. Sci. Technol. 26, 203213.
Westbrook, C. & Dryer, F. 1984 Chemical kinetic modelling of hydrocarbon combustion. Prog. Energ. Combust. Sci. 10, 157.
Wu, M., Kwon, S., Driscoll, J. & Faeth, G. 1990 Turbulent premixed hydrogen/air flames at high reynolds numbers. Combust. Sci. Technol. 73, 327350.
Xu, Y. & Smooke, M. D. 1991 Primitive variable solution of a confined laminar diffusion flame using a detailed reaction mechanism. In Fourth Intl Conf. on Numerical Combustion, St Petersburg, FL, pp. 228229. SIAM.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows

  • M. Baum (a1), T. J. Poinsot (a2), D. C. Haworth (a3) and N. Darabiha (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.